ENGINEERING (Ph.D.)

Executive Officer: Associate Dean Ardie D. Walser
The Grove School of Engineering
The City College
Convent Avenue and 138th Street
New York, NY 10031
212.650.8030
Email: awalser@gc.cuny.edu
http://www1.ccny.cuny.edu/prospective/engineering

Note: The Ph.D. Program in Engineering at the Graduate Center is no longer accepting any new applications. The Graduate Center is providing the opportunity for continuing students to complete their degrees. Prospective students may apply to the Grove School of Engineering at The City College of the City University of New York. See http://www1.ccny.cuny.edu/prospective/engineering/. For information, please contact Associate Dean Ardie D. Walser: awalser@gc.cuny.edu.

FACULTY

THE PROGRAM

The Ph.D. Program in Engineering prepares selected students for careers in the fields of engineering. Doctoral work in engineering is offered at the School of Engineering of The City College. The following areas of doctoral study are offered: biomedical, chemical, civil, electrical, and mechanical engineering.
Biomedical Engineering

The purpose of biomedical engineering, as an interdisciplinary research discipline, is to apply engineering principles and physical and mathematical concepts to problems in medicine and biology and to contribute to the advancement of technology in cost-effective health and medical care. The goal of our biomedical engineering program is to provide students with an engineering or science background the knowledge and skills with which they can creatively contribute to the technological revolution in medicine and health care that dramatically transformed the prevention, diagnosis, and treatment of disease in the last few decades of the twentieth century.

The program combines course work in the traditional engineering disciplines, specially designed courses in biomedical engineering, mathematical and computational modeling, and the biological sciences; it offers students research opportunities that are at the forefront of the interface between engineering, the biological sciences, and medicine: arterial transport, bioheat transfer, biomechanics of the cervical spine, biosignal processing, bone formation, cardiovascular dynamics, cartilage and soft tissue engineering, design and structural studies of biomaterials, hydrogels for controlled drug release, intercellular communication, lung biology, mechanosensation in bone tissue, microvascular exchange, microfluidic devices, orthopaedic biomechanics, rehabilitation engineering, renal transport, ventricular arrhythmias. This research is conducted in an environment of collaboration among engineers, biological scientists, and health care professionals from both CUNY and some of the premier medical institutions in New York City.

The New York Center for Biomedical Engineering (NYCBE) at the City College of New York was established in 1994 with the support of the Whitaker Foundation to serve as a national urban model for training in biomedical engineering research. It is a consortium of faculty and researchers from:
- The City College of New York School of Engineering
- CUNY Graduate Center
- Albert Einstein College of Medicine
- Columbia College of Physicians and Surgeons
- The Hospital for Special Surgery/Weill Medical College of Cornell University
- Mount Sinai School of Medicine
- New York University School of Medicine
- Memorial Sloan-Kettering Cancer Center

In addition to the principal partners in the NYCBE, faculty and research staff have collaborations with numerous other medical institutions nationwide and abroad. The NYCBE, a CUNY institute since 1996, provides access to a diverse faculty of nearly 30 researchers in a broad spectrum of research areas.

Chemical Engineering

The program in chemical engineering is actively involved in research pointed toward new understanding and development in the areas of fluid mechanics, controlled drug release, chemical process economics, particle technology, fluid particle systems, soft materials, surface phenomena, self-assembled monolayers, nanotechnology, and biomedical engineering. Graduate study includes courses in chemical engineering fundamentals as well as courses in applications of chemical engineering principles in specific areas such as economics of new processes, fluidization, particle science and technology, and interfacial phenomena.

The Benjamin Levich Institute of Physico-Chemical Hydrodynamics, an internationally recognized research center for the study of fundamental problems of flow and transport in complex fluids, fluid-like media, and interface systems headed by Albert Einstein Professor Morton Denn, includes faculty from the departments of Chemical Engineering, Mechanical Engineering, and Physics. The current scope of the institute’s research is in five major areas: granular flows, low Reynolds number hydrodynamics, non-Newtonian fluid mechanics, computational fluid mechanics, and transport along interfaces. Examples include experimental granular kinetic theory, granular compaction, particle migration in concentrated suspensions undergoing shear, the influence of surfactants on the motion of drops and bubbles, microscopic fluid mechanics using
molecular dynamics simulations and droplet mechanics in liquid-crystalline polymer blends. The institute has excellent laboratory and computational facilities.

The development of advanced design methods for the practicing chemical engineer is a special interest in the department. These new methods incorporate the achievements of recent chemical engineering research. This approach is applied to both process and chemical reactor design, process control, and process economics.

In biomedical research, the department engages in the transport of macromolecules across arterial walls and their accumulation therein, low Reynolds number hydrodynamics applications to microcirculation, controlled drug release, and the development of biomaterials from cellular components.

Materials research in the department is aimed at an understanding of the production and characterization of optical materials, powder technology, and circulating fluid beds. Research on nanotechnology and nanoscience is based on the adsorption of surfactants at the solid-liquid interface for the purpose of engineering materials with specific surface properties. Applications are made to control of wetting behavior, adhesion, novel sensors, and templated crystallization.

Civil Engineering
The program in civil engineering is actively involved in research in the areas of structural mechanics, water resources, environmental and geotechnical engineering, and transportation. Graduate study includes courses in civil engineering fundamentals as well as courses in analysis and design in a variety of areas covering the various specialties in civil engineering. The department also houses two research institutes and two research centers.

The program in structural mechanics emphasizes the analysis and design of civil engineering structures using analytical and numerical methods. Current research interests include wave propagation and fracture mechanics, behavior of concrete and composite materials, stochastic response of bridges, load modeling and reliability analysis of highway bridges, nondestructive testing, earthquake engineering, civil engineering materials, structural dynamics and control, and computational mechanics.

The City University Institute for Transportation Systems engages in research efforts that are generally interdisciplinary in nature, and the institute provides an opportunity to utilize and coordinate the talents of the faculties at the various campuses of the University system. Current research activities include bus procurement projects dealing with conventional and experimental fuels, private transportation initiatives in the New York metropolitan area, development of a comprehensive dynamic model of urban systems, value capture financing techniques in transportation, an expert system for selection of traffic accident countermeasures, and nondestructive testing of pavement.

The City College Earthquake Engineering Research Center actively pursues basic and applied research in earthquake engineering. Current research activities in the center include stochastic response of bridges under seismic loads, models of nonlinear behavior of structures, structural control, soil liquefaction, and development of design codes for earthquake hazard mitigation.

The Center for Water Resources and Environmental Research engages in basic and applied research in studying various problems of water resources and environment protection, especially those where a multidisciplinary and/or a multinational approach is needed. Current research activities in the center include application of microwave remotely sensed data in detection and classification of wetlands, as well as soil moisture measurements; plume source tracking in rivers and coastal waters; contaminant transport in freezing/thawing soils; application of Geographical Information Systems (GIS) and remote sensing for hydrological evaluation of watersheds; effect of climate changes on water resources; development of new technology for beach protection; mathematical modeling for evaluation and protection of wetlands; fate and transport of radionuclides during surface runoff and soil erosion processes.

The Institute for Municipal Waste Research initiates and coordinates research activities in the area of environmental engineering that include bench, pilot, and demonstration scale evaluations of biological and physicochemical processes for the removal of nutrients from domestic and industrial wastewaters as well as landfill leachates. Additional areas of research
include hydrodynamic modeling of rectangular and circular clarifiers to predict and enhance process performance; attached bacterial growth techniques in evaluating biological stability and postdisinfection bacterial regrowth potential in drinking water supplies; effects of various oxidation processes such as ozonation, chlorination, and UV irradiation on biological stability of water; kinetics of organic disinfection by-products (DBP) formation during chlorination and ozonation; and photodecomposition of inorganic DBP as well as organic compounds considered precursors to DBP formation by UV irradiation.

Electrical Engineering

Graduate study in electrical engineering covers a wide range of interests. These include basic studies of electrical, electronic, and photonics processes and phenomena, and their applications, systems research, computer engineering, communications systems and networks, and image and signal processing. The faculty in electrical engineering are engaged in a broad spectrum of research areas. Of particular strength are the areas of photonics engineering, signal and image processing, communications engineering, control theory, and computer engineering.

The Photonics Engineering group’s interests are in new laser sources, optical computing, ultrafast phenomena and devices, new optical materials, microstructures, laser remote sensing, quantum optics and electronics, nonlinear optics, and optical diagnostic instruments.

The Signal Processing group is engaged in research in filter design, stability analysis, algorithms for extraction of parameters from radar, X-ray and NMR signals, development of fast algorithms, and image processing.

The Communication Engineering group’s activities are in modulation scheme, spread spectrum techniques, error-correcting codes, and data and digital communication.

The Control group is pursuing research in adaptive, modal, nonlinear, and robust control and flight control applications.

The Computer Engineering group’s activities are in computer architecture, neural networks, computer communications, and local area networks.

The departmental facilities include the Loral Microwave Laboratory, the Hamamatsu Photonics Application Laboratory, the Ultrafast Photonics Laboratory, the Photonics Engineering and Remote Sensing Laboratory, the Optical Computing Laboratory, the Communications Laboratory, the Supercomputation Laboratory, and the Image Processing Laboratory.

Mechanical Engineering

Graduate study in mechanical engineering is organized into fluid mechanics, heat transfer, aerodynamics, theory of machines, biotransport, biomechanics, and solid mechanics and vibrations. Specific opportunities for research and thesis work are offered in dynamics and optimization of machines, turbulence, vortex flow, experimental and computational fluid mechanics, gas dynamics, biofluid mechanics, bioheat and mass transport, heat and mass transfer, turbomachinery, thermal stresses, vibrations, micromechanics, microheat transfer, MEMS, fluid mechanics and heat transfer in porous media, mechanics of skiing, fracture mechanics, composite materials, experimental mechanics, bone mechanics, and boundary and finite element techniques. Facilities for experimental research include wind tunnels, a shock tube, laboratories for heat transfer, turbomachinery, fatigue and fracture of materials, machine dynamics and vibrations, tissue mechanics, microcirculatory flow, manufacturing, and aerodynamics.

Recent acquisitions include a subsonic wind tunnel, a microelectronics cooling facility, high frequency computerized data acquisition systems, a YAG laser, Ar+ laser, laser Doppler velocimeter, global Doppler velocimeter, a shaker, holography equipment, a high-temperature refractory furnace, a universal testing machine, a bone-loading device, and a scanning electron microscope. The research effort in the department is led by several prominent faculty members and has been amply supported with funding from NSF, NIH, ONR, NASA, U.S. Army, ARPA, and AFOSR, as well as industry and local government agencies.

Special Requirements for Admission

In addition to meeting the general University requirements stated earlier in this bulletin, the applicant must have received a bachelor’s degree in a branch of engineering or in a closely related area appropriate to the applicant’s intended field of study from a college or university of accred-
Special Requirements for the Doctor of Philosophy

The general University requirements are stated earlier in this bulletin. The special requirements in engineering are as follows.

Course of Study After being notified of admission and preferably before registration, the student should arrange for an appointment with a departmental adviser who will help the student plan an approved sequence of courses, including courses from programs other than engineering. Courses will not be credited toward a degree unless they are part of an approved program. A minimum of 60 credits of approved course work is required for a Ph.D. in engineering.

Research Techniques The student shall demonstrate proficiency in those research techniques considered appropriate by the faculty in the student's field of specialization.

Residence Requirements The student is required to be in residence for the equivalent of six full-time semesters. With the approval of the Executive Officer, a student who possesses a master’s degree in engineering, or in a relevant area, from an accredited institution or has completed equivalent graduate work will be required to be in residence for the equivalent of only four full-time semesters. At least two consecutive semesters must be in full-time residence. With the permission of the Executive Officer, students holding research or teaching appointments may study part-time.

Dissertation Before undertaking research work, the student's program of research must be approved by a guidance committee and the appropriate department chair.

Courses

Courses in engineering are listed under the following departments of engineering: Biomedical, Chemical, Civil, Electrical, and Mechanical Engineering, and under the general heading Engineering. It is expected that courses with a departmental designation will usually be given by a member of that department and that usually the class will consist of students associated with that department. Courses listed under the general heading Engineering are expected to be of interest to students specializing in various branches of engineering. The instructors and students for these courses will be drawn from among the several engineering departments. Students are required to have the approval of the adviser before registration to ensure that they have adequate background knowledge and prerequisites. For course descriptions and prerequisites, see The City College Graduate Bulletin.

Unless otherwise stated, all courses are 45 hours plus conferences, 3 credits.

Engineering

ENGR 57060* Applied Algebra
ENGR 57080 Foundations of Fluid Mechanics I
ENGR 57090 Foundations of Fluid Mechanics II
ENGR 57110 Introduction to Engineering Analysis
ENGR 57120* Functions of a Complex Variable
ENGR 57130* Transform Methods in Engineering
ENGR 57140 Applied Partial Differential Equations
ENGR 57150 Introduction to Numerical Methods
ENGR 57160 Advanced Numerical Analysis
ENGR 57170 Finite Element Methods in Engineering
ENGR 57200* Random Processes in Engineering Mechanics
ENGR 57240 Turbulent Flows
ENGR 57320* Statistical Thermodynamics
ENGR 57520 Behavior of Inelastic Bodies and Structures
ENGR 57640 Wave Propagation in Fluids and Solids
ENGR 57910 Mass Transfer
ENGR 58010 Fluid Dynamic Stability
ENGR 58310* Irreversible Thermodynamics
ENGR 58400 Perturbation Techniques
ENGR 58500 Theory of Elasticity

Biomedical Engineering

BM E 55900 Independent Studies and Research in Biomedical Engineering
BM E 57000 Biomedical Engineering Seminar
BM E 57220 Cell and Tissue Transport
BM E 57430 Physiology for Biomedical Engineers
BM E 57500 Biomedical Imaging
BM E 57510 Nonlinear Signal Processing in Biomedicine
BM E 57710 Cell and Tissue Mechanics
BM E 57730 Cell and Tissue-Biomaterial Interactions
BM E 57770 Microfluidic Devices in Biotechnology
BM E 57980 Project
BM E 58990 Research for the Doctoral Dissertation

Chemical Engineering

CH E 54700 Topics in Materials Science and Engineering
CH E 55150 Rheology
CH E 55170 Techniques and Practice of Simulation
CH E 55530 Bioprocess Engineering: Principles and Applications
CH E 55900 Independent Studies and Research in Chemical Engineering

Variable credits, 1-3

CH E 57230 Non-Newtonian Fluids
CH E 57200 Advanced Chemical Thermodynamics
CH E 57300 Chemical Process Simulation
CH E 57320* Statistical Mechanics I
CH E 57330 Advanced Kinetics
CH E 57340 Fluidization
CH E 57350* Statistical Mechanics II
CH E 57410 Chemical Process Economics
CH E 57550 Interfacial Phenomena
CH E 57570 Advanced Materials Engineering
CH E 57610 Polymer Science and Engineering
CH E 57770 Process Dynamics and Control I
CH E 57780 Process Dynamics and Control II
CH E 57860 Separation Operations I
CH E 57880 Separation Operations II
CH E 57890 Nanotechnology
CH E 57900 Bioprocess Engineering
CH E 57910 Mass Transfer

Civil Engineering

C E 55420 GIS Transportation Modeling
C E 55900 Independent Studies and Research in Civil Engineering

Variable credits, 1-3

C E 56010* Introduction to Transportation
C E 56020 Transportation Economics
C E 56210 Flexible and Rigid Pavements
C E 56240 Airport Design and Planning
C E 56260 Rail System Design
C E 56350* Traffic Engineering Studies
C E 56360 Geometric Design of Transportation Facilities
C E 56410 Highway and Airport Construction
C E 56450 Urban Public Transportation
C E 56460 Environmental Issues in Transportation
C E 56520 Bridge Engineering
C E 56530 Advanced Structural Design
C E 56570 Condition Assessment and Rehabilitation of Structures
C E 56610 Advanced Hydraulics
C E 56630 Groundwater Hydrology and Contamination
C E 56650 Statistical Methods in Water Resources
C E 56760 Unit Processes in Environmental Engineering
C E 56840 Solid Waste Management
C E 56900 Advanced Foundation Engineering
C E 56910 Advanced Finite Elements
C E 57200 Travel Demand Forecasting
C E 57230 Pavement Management Systems
C E 57240 Analytical Techniques in Transportation
C E 57260 Urban Transportation Planning
C E 57270 Transportation Policy
C E 57280 Transit Systems: Planning and Operations
C E 57290 Transportation Project Evaluation
C E 57300 Structural Dynamics
C E 57350 Applied Elasticity and Plasticity
C E 57360 Fracture Mechanics
C E 57380* Plates and Shells
C E 57390 Composites in Modern Structure
C E 57400 Traffic Control
C E 57410 Intelligent Transportation Systems (ITS): Fundamentals and Applications
C E 57430* Plastic Analysis and Design of Structures
C E 57450 Advanced Transportation Planning
C E 57470 Planning and Design of Passenger Terminals
C E 57540 Linear and Nonlinear Analysis of Structures
C E 57550* Stability of Structures
C E 57560 Earthquake Engineering
C E 57580 Structural Reliability
C E 57620 Transport in Porous Media
C E 57630 Water Resources Modeling
C E 57700 Wastewater Treatment
C E 57910 Soil Dynamics
C E 57920 Advanced Soil Mechanics
C E 58110* Port Design and Planning
C E 58200* Transportation Planning Models

Electrical Engineering

E E 54500 Microwave Networks
E E 54510 Communication Electronics
E E 54520 Fiber Optic Communications I
E E 54530 Digital Processing of Signals
E E 54540 Physical Electronics
E E 54560 Elements of Control Theory
E E 54570 Electronic Circuits
E E 54580 Introduction to Lasers
E E 54590 Microprocessors
E E 54600 Computer Communication Systems
E E 54620 Photonic Engineering
E E 54630 Wireless Communications
E E 54640 VLSI Design

* 75 hours (includes 3 hour/week laboratory), 3 credits
Electrical Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>EE 55900</td>
<td>Independent Studies and Research in Electrical Engineering</td>
<td>Variable credits, 1-3</td>
</tr>
<tr>
<td>EE 55940</td>
<td>High Speed Networks</td>
<td></td>
</tr>
<tr>
<td>EE 57010</td>
<td>Probability and Stochastic Processes</td>
<td></td>
</tr>
<tr>
<td>EE 57030</td>
<td>Electrodynamics</td>
<td></td>
</tr>
<tr>
<td>EE 57040</td>
<td>Signal Theory</td>
<td></td>
</tr>
<tr>
<td>EE 57050</td>
<td>Theory of Linear Systems</td>
<td></td>
</tr>
<tr>
<td>EE 57120</td>
<td>Cryptology</td>
<td></td>
</tr>
<tr>
<td>EE 57140</td>
<td>Knowledge-Based Systems</td>
<td></td>
</tr>
<tr>
<td>EE 57160</td>
<td>Digital Signal Processing Algorithms</td>
<td></td>
</tr>
<tr>
<td>EE 57170</td>
<td>Theory of Switching Systems I</td>
<td></td>
</tr>
<tr>
<td>EE 57180</td>
<td>Theory of Switching Systems II</td>
<td></td>
</tr>
<tr>
<td>EE 57190*</td>
<td>Radar Signal Processing</td>
<td></td>
</tr>
<tr>
<td>EE 57220</td>
<td>Image Processing and Recognition</td>
<td></td>
</tr>
<tr>
<td>EE 57230</td>
<td>Digital Computers I</td>
<td></td>
</tr>
<tr>
<td>EE 57240</td>
<td>Digital Computers II</td>
<td></td>
</tr>
<tr>
<td>EE 57270</td>
<td>Parallel Processing</td>
<td></td>
</tr>
<tr>
<td>EE 57320</td>
<td>Analog Integrated Circuits</td>
<td></td>
</tr>
<tr>
<td>EE 57360</td>
<td>MOS Devices and Circuits</td>
<td></td>
</tr>
<tr>
<td>EE 57410</td>
<td>Introduction to Modern Control Theory</td>
<td></td>
</tr>
<tr>
<td>EE 57440</td>
<td>Introduction to Adaptive Control</td>
<td></td>
</tr>
<tr>
<td>EE 57450</td>
<td>Theory of Optimal Control</td>
<td></td>
</tr>
<tr>
<td>EE 57460</td>
<td>Analysis and Design of Intelligent Systems</td>
<td></td>
</tr>
<tr>
<td>EE 57480</td>
<td>Robotics</td>
<td></td>
</tr>
<tr>
<td>EE 57600</td>
<td>Communication Protocol Engineering</td>
<td></td>
</tr>
<tr>
<td>EE 57610</td>
<td>Integrated Circuits: Design and Fabrication I</td>
<td></td>
</tr>
<tr>
<td>EE 57620</td>
<td>Integrated Circuits: Design and Fabrication II</td>
<td></td>
</tr>
<tr>
<td>EE 57650</td>
<td>Antenna Theory</td>
<td></td>
</tr>
<tr>
<td>EE 57680</td>
<td>Optical Remote Sensing</td>
<td></td>
</tr>
<tr>
<td>EE 57700</td>
<td>Local Area Networks</td>
<td></td>
</tr>
<tr>
<td>EE 57710</td>
<td>Statistical Communication Theory</td>
<td></td>
</tr>
<tr>
<td>EE 57720</td>
<td>Spread Spectrum</td>
<td></td>
</tr>
<tr>
<td>EE 57730</td>
<td>Digital Communication I</td>
<td></td>
</tr>
<tr>
<td>EE 57740</td>
<td>Digital Communication II</td>
<td></td>
</tr>
<tr>
<td>EE 57740</td>
<td>Data Communications</td>
<td></td>
</tr>
<tr>
<td>EE 57820</td>
<td>Electro-Optics</td>
<td></td>
</tr>
<tr>
<td>EE 57830</td>
<td>Optical Communications</td>
<td></td>
</tr>
<tr>
<td>EE 57850</td>
<td>Optical Signal Processing</td>
<td></td>
</tr>
<tr>
<td>EE 58260*</td>
<td>Advanced Network Theory</td>
<td></td>
</tr>
<tr>
<td>EE 58270</td>
<td>Multidimensional Signal Processing</td>
<td></td>
</tr>
<tr>
<td>EE 58360</td>
<td>Microwave Electronics</td>
<td></td>
</tr>
<tr>
<td>EE 58460*</td>
<td>Advanced Topics in Control Theory</td>
<td></td>
</tr>
<tr>
<td>EE 58720*</td>
<td>Advanced Communication Theory</td>
<td></td>
</tr>
<tr>
<td>EE 58730*</td>
<td>Signal Detection, Estimation and Modulation</td>
<td></td>
</tr>
<tr>
<td>EE 58760*</td>
<td>Advanced Information and Coding Theory</td>
<td></td>
</tr>
<tr>
<td>EE 58810</td>
<td>Quantum Electronics</td>
<td></td>
</tr>
<tr>
<td>EE 58820*</td>
<td>Wave Interaction in Solids</td>
<td></td>
</tr>
<tr>
<td>EE 58830*</td>
<td>Quantum Optics</td>
<td></td>
</tr>
<tr>
<td>EE 58840*</td>
<td>Kinetic Theory</td>
<td></td>
</tr>
<tr>
<td>EE 58850</td>
<td>Nonlinear Optics</td>
<td></td>
</tr>
</tbody>
</table>

Mechanical Engineering

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ME 55900</td>
<td>Independent Studies and Research in Mechanical Engineering</td>
<td>Variable credits, 1-3</td>
</tr>
<tr>
<td>ME 57190*</td>
<td>Lubrication</td>
<td></td>
</tr>
</tbody>
</table>

148
ME 57220* Applied Fluid Dynamics
ME 57310 Steam and Gas Turbines
ME 57330* Advanced Engineering Thermodynamics
ME 57360 Conduction Heat Transfer
ME 57370 Convection Heat Transfer
ME 57380 Radiation Heat Transfer
ME 57400 Kinematic Analysis of Mechanisms
ME 57410 Kinematic Synthesis of Mechanisms
ME 57540 Advanced Stress Analysis in Machine Components
ME 57560 Advanced Analytical Dynamics
ME 57580* Trajectories and Orbits
ME 57600 Foundation of Mechanical Vibrations
ME 57620 Advanced Concepts in Mechanical Vibrations
ME 57630* Mechanical Feedback Control Systems
ME 57650 Computer-Aided Design

75 hours (including 3 hour/week laboratory), 3 credits
ME 57660* Boundary Element Method
ME 57670 Composite Materials
ME 57680 Nonlinear Dynamic and Chaos
ME 57690 Experimental Methods in Fluid Mechanics and Combustion
ME 57980 Project
ME 58020 Computation and Modeling of Turbulent Flows

*offered infrequently