Alumni Dissertations and Theses

 
 

Alumni Dissertations and Theses

Filter Dissertations and Theses By:

 
 
  • SYNTHESIS OF NEW PORPHYRINOIDS FOR BIOMEDICAL AND MATERIALS APPLICATIONS

    Author:
    Sunaina Singh
    Year of Dissertation:
    2012
    Program:
    Chemistry
    Advisor:
    Charles Drain
    Abstract:

    The facile synthesis of three non-hydrolysable thioglycosylated porphyrinoids is reported. Starting from meso perfluorophenylporphyrin (TPPF20), the non-hydrolysable thioglycosylated porphyrin (PGlc4), chlorin (CGlc4), isobacteriochlorin (IGlc4), and bacteriochlorin (BGlc4) can be made in 2-3 steps. The ability to append a wide range of targeting agents onto the perfluorophenyl moieties, the chemical stability, and the ability to fine-tune the photophysical properties of the chromophores make this a suitable platform for development of biochemical tags, diagnostics, or as photodynamic therapeutic agents. With reduction of one or two pyrrole double bonds, there is a red shift in the lowest energy absorption band and a significant increase in intensity. The fluorescence of these porphyrinoids is in the order PGlc4 = BGlc4 < CGlc4 4 and there is a corresponding decrease in the amount of triplet formed. Fluorescence micrographs of cells after treatment with these four porphyrinoids indicate they are taken up. The CGlc4 and IGlc4 may be dual function agents that can detect cancer by luminescence, and treat cancer by photodynamic therapy (PDT). Porphyrins appended with four rigid hydrogen bonding motifs on the meso positions were synthesized and self-assembled into a cofacial cage with four complementary bis- (decyl)melamine units in dry solvents, these hydrogen-bonded cages were analysed by diffusion-ordered spectroscopy (DOSY) in solution. The hydrocarbon chains on the melamine mediate the formation of nanofilms on surfaces as the solvent slowly evaporates. A water soluble zinc (II) phthalocyanine symmetrically appended with eight thioglucose units was synthesized from commercially available hexadecafluoro-phthalocyaninato zinc(II) by controlled nucleophilic substitution of the peripheral fluoro groups by thio-sugars. The photophysical properties and cancer cell uptake studies of this nonhydrolyzable thioglycosylated phthalocyanine are reported. The new compound has amphiphilic character, is chemically and photochemically stable, and can potentially be used as a photosensitizer in photodynamic therapy. A porphyrin bearing pyridyl groups at the meso positions was synthesized using 2,6-diacetamido-4-formylpyridine. A new method has been developed for the synthesis of the precursor aldehyde that avoid much of the problems associated with the earlier synthesis. With this porphyrin it is possible to build hetero-complementary rigid, multi-porphyrin supramolecular arrays via hydrogen bonds. For example, when using naphthalenediimide (NDI) units a checkerboard pattern is expected to be formed using this porphyrin as a donor and NDI as an acceptor where triple hydrogen bond is formed between the diimide and pyridyl units. Energy transfer can be studied through this hydrogen bonded supramolecular assembly. The synthesis of a triply bridged diporphyrin appended with six thioglucose units is reported. The electronic spectrum of this triply bridged porphyrin has enhanced intensity at low- energy wavelengths that reaches the near infrared region. The goal of this project is to create tumor targeting dyes that can be activated with red wavelengths of light that penetrate deeper into tissues. This new compound is amphiphilic in nature, chemically and photochemically stable, expected to have unusual photophysical and electrochemical properties, and can potentially be used as a photosensitizer in photodynamic therapy.

  • NEW DIRECTIONS WITH TRIAZOLE AND BENZOTRIAZOLE CHEMISTRY: FROM NUCLEOSIDE MODIFICATION TO C-H BOND-ACTIVATION

    Author:
    Manish Singh
    Year of Dissertation:
    2012
    Program:
    Chemistry
    Advisor:
    Mahesh Lakshman
    Abstract:

    Engineered peptide molecules are commonly synthesized by utilizing various peptide coupling reagents such as 1H-benzotriazol-1-yloxy-tris(dimethylamino)phosphonium hexafluorophosphate (BOP), 1H-benzotriazol-1-yl-4-methylbenzenesulfonate (Bt-OTs), 1-hydroxybenzotriazole (HOBt), etc. Their ready commercial availability, limited synthetic chemistry applications, and relatively high oxophilicity, prompted us to explore their applicability in new areas of organic synthesis. We have shown, for the first time, the application of BOP for the facile synthesis of C-6 azidopurine ribonucleosides and 2'-deoxyribonucleosides via the O6-(benzotriazol-1-yl) nucleoside derivatives. In organic solvents these azido nucleosides exhibit azidetetrazole equilibrium. The extent of azide and tetrazole tautomers in various organic solvents was studied, and relative amount of each tautomer in that solvent was determined. Subsequently, a detailed analysis of Cu-mediated azide-alkyne cycloaddition (CuAAC) leading to C-6 purine triazolyl nucleoside analogues was undertaken. Some of these nucleoside triazole derivatives showed moderate cytotoxic activity in human colon and ovarian cancer cell lines. In an attempt to alter the biological activity of these nucleoside triazole analogues, purine N-directed ruthenium-catalyzed C-H bond functionalization was evaluated. Here a serendipitous discovery of C(sp3)-H bond functionalization of N-methyl-2-pyrrolidone (NMP) was made. This result was developed into a C-H bond functionalization of NMP, and two cyclic, and a silyl ether using two 1,2,3-1H-benzotriazoles. Further, BOP and Bt-OTs reagents were applied to develop a new method for the dehydration of aldoximes to nitriles. This aldoxime dehydration method was utilized to develop one of the shortest and simplest routes towards the synthesis of an antiviral agent, 4'-cyano adenosine. Spurred by these findings, we investigated the reactivity of Bt-OTs towards various alcohols and probed the mechanism of reaction. These studies lead to the development of a new method for synthesis of benzotriazolylethers of alcohols. Also, for the first time we showed that -OBt anion could act as a leaving group from a benzylic sp3 hybridized carbon atom. This very important finding led to the utility of benzotriazolyl ethers of benzylic alcohols in a palladium-catalyzed C-C cross-coupling reactions.

  • Nano-device Fabrication from Quantum Dot Assembly

    Author:
    Wei Su
    Year of Dissertation:
    2012
    Program:
    Chemistry
    Advisor:
    Hiroshi Matsui
    Abstract:

    Colloidal semiconductor nanocrystals are highly photoluminescent crystalline nanoparticles (also termed as: quantum dots, QDs) with diameters ranging typically from 1 to 10 nm. For over a decade, quantum dots have been applied in various areas ranging from biological imaging, novel sensors to electroluminescence light-emitting diode (LED) due to their unique optical and electrical properties, such as broad excitation region, tunable size-dependant photoluminescence, high quantum yield, excellent chemical stability as compared to conventional organic dyes, and narrow emission peaks. We successfully designed and built two fluorescence resonant energy transfer (FRET) donor-acceptor assemblies between quantum dots. Each assembly was characterized by steady-state and time-resolved photoluminescence measurements at different donor-toacceptor ratios. Both photoluminescence quenching and decrease in the lifetime of donor quantum dots provided a concrete evidence of occurrence of FRET in each quantum dots pair assembly. Accompanied by the tunability of the emission energy of quantum dots in the broad visible region, our investigations on QD-QD FRET pairs present an attractive approach towards developing efficient light emitters and bio-sensors. Furthermore, we explored to build a novel microcavity by embedding one QD-QD between two distributed Bragg reflectors (DBRs). The spontaneous emission of QDs embedded inside a quasi one-dimensional microcavity should be further enhanced by FRET from the donor QD to the acceptor of QD. Bio-templating is a promising alternative method for semiconductor nanowire synthesis since it offers a variety of advantages such as low energy consumption for the synthesis and eases of template bionanotube preparation and CdS coating process. As a continued work, we exploited the direct nucleation and growth of CdS nanocrystals on the biomolecular nanowires without using the mineralization peptides. The whole synthesis process is completed in simple two steps without the uses of catalytic peptides or capping agents, commonly used for various nanoparticle synthesis. We also report a peptide molecule that self-assembles at the air-water interface and is capable of reducing gold ions and coordinating them to form triangular nanoplatelets and related structures. We show that we are able to control both morphology and crystallinity of gold nanoplatelets as a function of surface pressure.

  • Synthesis and Characterization of Unsymmetrical Perylene Derivatives and PDI Oligomers

    Author:
    Runkun Sun
    Year of Dissertation:
    2013
    Program:
    Chemistry
    Advisor:
    Shi Jin
    Abstract:

    Abstract Synthesis and Characterization of Unsymmetrical Perylene Derivatives and PDI Oligomers By Runkun Sun Adviser: Professor Shi Jin Since the discovery of high fluorescent property of perylene tetracarboxylic diimide (PDI) derivatives in 1959, more and more researchers' attention has been attracted to related fields. Ever since, many kinds of PDI derives has been synthesized and characterized. And many special properties of PDI derivatives also has been found, such as strong absorbance ability, special redox property and self assembly induced by π-π interaction etc. All these properties endow PDI derivatives wide applications in photovoltaic field and semi-conducting materials area. At the same time, those important applications also encourage researchers to do more exploration on the synthesis and characterization of PDI derivatives. As one of those researchers, my thesis also mainly focused on developing new synthetic methods and characterization of novel PDI derivatives. In Chapter 1, the history of perylene, PDI derivatives and PDI oligomers are introduced. Their corresponding properties and applications also are introduced. Furthermore, the synthetic methods for different kinds of PDI derivatives, both advantages and disadvantages, are discussed thoroughly. In Chapter 2, with the investigation of known reactions which were used to prepare the key intermediate, perylene monoimide monoanhydride, a new synthetic method was developed. The key intermediate could be prepared with high yield conveniently. With the key intermediate, several unsymmetric PDI derivatives were prepared with decent yield. The optical property of one unsymmetric PDI was studied. In Chapter 3, the synthesis of peryelene diester monoanhydride (PEA) and perylene monoimide monoanhydride (PIA) was discussed. We discovered a new way to prepare PEA and PEI. Several PEA and PEI with complex structure were prepared with decent yield. The first unsymmetric PEA was synthesized. In Chapter 4, the synthesis of several perylene oligomers was discussed. Base on our experience gained in the Chapter 3 and our investigation of Langhals' strategy, a new mechanism to grow perylene oligomers was developed by us. With our strategy, the key intermediate, perylene dimer dianhydride, could be obtained with high yield. Starting from this intermediate, a few perylene oligomers were obtained. The extraordinary absorption ability of PDI Oligomers was studied.

  • SYNTHESIS OF OLIGO(P-PHENYLENE VINYLENE)S AND FUNCTIONALIZATION OF SI(100) AND/OR SI(111) SURFACES WITH OLIGO(P-PHENYLENE VINYLENE)S

    Author:
    Chivin Sun
    Year of Dissertation:
    2009
    Program:
    Chemistry
    Advisor:
    Ralf Peetz
    Abstract:

    This doctoral thesis focuses firstly on the step-wise synthesis of a library of rigid-rod-type conjugated difunctional oligo(p-phenylene vinylene)s (OPVs) with varying chain lengths of the main chain and side chain substitution, i.e., monomer, dimer, and trimer units with chain end - terminal alcohol, aldehyde, vinyl, and alkyne functionality. All oligomers are soluble and show trans configuration at the internal vinylene bonds. The solublizing side-chains are of the alkyloxy type, i.e. heptyloxy (-OC7H15), butyloxy (-OC4H9), and methyloxy (-OCH3). All OPVs were characterized by means of ATR-FTIR, 1H-NMR (200 or 600 MHz) and 13C-NMR (50 or 150 MHz), 2D-NMR (HMBC and HSQC experiments), and optical spectroscopy. In subsequent steps, the OPVs were used as "building blocks". One application involved using a Cu(1)-catalyzed [3+2] Huisgen "click" cycloaddition to connect biotin ligands to both ends of the OPV, using spacer chains of varying length, consisting of oligo(ethylene glycol). Combining the valuable electro-optical properties of conjugated organic molecules with the biological recognition capability of biotin, the latter can be placed at variable distances via choosing an appropriate length of the hydrophilic spacer, which also serves to regulate the binding capabilities of the two terminal biotin units. To demonstrate this binding potential, networks were formed with streptavidin-coated quantum dots. The synthetic conditions are presented, together with representative optimizations of the key reactions. The organic compounds were analyzed by means of ATR-FTIR, 1H-NMR (200 or 600 MHz), 13C-NMR (50 or 150 MHz), 2D-NMR (HMBC and HMQC experiments), MS (ESI or MALDI-TOF), and optical spectroscopy. Networks were imaged with TEM. Another application involved templated grafting of the rigid-rod-type OPVs to flat surfaces of Si(100) and Si(111) via covalent Si(100)/Si(111)-O-C or Si(100)/Si(111)-C bonds. OPVs with terminal hydroxide (-OH), aldehyde (-CHO), alkyne (-CCH), and vinyl (-CH=CH2) functionalities were used. One approach involved the reaction of -OH, -CHO, and -CH=CH2 functional OPVs with Si(100)/Si(111)-H and/or Si(100)/Si(111)-Cl functionalized surfaces. Subsequent reaction of the resulting Si(100)/Si(111)-OPV-CH2OH surfaces with p-tolyl isocyanate produced urethane containing monolayers in a "click like" approach. The monolayers were characterized by means of XPS, ATR-FTIR, AFM, and confocal fluorescence laser scanning microscopy (CFLSM). A second approach involved synthesizing Si(100)/Si(111)-OCH2CH2N3 functional surfaces from the Si(100)/Si(111)-H and/or Si(100)/Si(111)-Cl with HOCH2CH2N3, then using a "click reaction" to attach -CCH functional (alkyne) OPV to the surface-bound N3. The resulting monolayers were characterized by means of XPS, ATR-FTIR, AFM, and CFLSM. A third approach involved the synthesis of Si(111)-OCH2CH2OH functional surfaces from Si(111)-H and/or Si(111)-Cl with HOCH2CH2OH, and then using a "click like" reaction between the Si(111)-OCH2CH2OH functionalized surfaces and 1,4-phenylene diisocyanate (OCN-Ph-NCO) to afford Si(111)-U-Ph-NCO surfaces. Subsequent reaction of these with the -OH functional OPVs produced urethane containing OPV monolayers. The latter were characterized by means of XPS, ATR-FTIR, AFM, and CFLSM. The combined results presented in this thesis represent a further major advance in the controlled functionalization of Si-surfaces and herald a variety of potential applications that use such a combination of inorganic and organic semiconductors.

  • SYNTHESIS OF OLIGO(P-PHENYLENE VINYLENE)S AND FUNCTIONALIZATION OF SI(100) AND/OR SI(111) SURFACES WITH OLIGO(P-PHENYLENE VINYLENE)S

    Author:
    Chivin Sun
    Year of Dissertation:
    2009
    Program:
    Chemistry
    Advisor:
    Ralf Peetz
    Abstract:

    This doctoral thesis focuses firstly on the step-wise synthesis of a library of rigid-rod-type conjugated difunctional oligo(p-phenylene vinylene)s (OPVs) with varying chain lengths of the main chain and side chain substitution, i.e., monomer, dimer, and trimer units with chain end - terminal alcohol, aldehyde, vinyl, and alkyne functionality. All oligomers are soluble and show trans configuration at the internal vinylene bonds. The solublizing side-chains are of the alkyloxy type, i.e. heptyloxy (-OC7H15), butyloxy (-OC4H9), and methyloxy (-OCH3). All OPVs were characterized by means of ATR-FTIR, 1H-NMR (200 or 600 MHz) and 13C-NMR (50 or 150 MHz), 2D-NMR (HMBC and HSQC experiments), and optical spectroscopy. In subsequent steps, the OPVs were used as "building blocks". One application involved using a Cu(1)-catalyzed [3+2] Huisgen "click" cycloaddition to connect biotin ligands to both ends of the OPV, using spacer chains of varying length, consisting of oligo(ethylene glycol). Combining the valuable electro-optical properties of conjugated organic molecules with the biological recognition capability of biotin, the latter can be placed at variable distances via choosing an appropriate length of the hydrophilic spacer, which also serves to regulate the binding capabilities of the two terminal biotin units. To demonstrate this binding potential, networks were formed with streptavidin-coated quantum dots. The synthetic conditions are presented, together with representative optimizations of the key reactions. The organic compounds were analyzed by means of ATR-FTIR, 1H-NMR (200 or 600 MHz), 13C-NMR (50 or 150 MHz), 2D-NMR (HMBC and HMQC experiments), MS (ESI or MALDI-TOF), and optical spectroscopy. Networks were imaged with TEM. Another application involved templated grafting of the rigid-rod-type OPVs to flat surfaces of Si(100) and Si(111) via covalent Si(100)/Si(111)-O-C or Si(100)/Si(111)-C bonds. OPVs with terminal hydroxide (-OH), aldehyde (-CHO), alkyne (-CCH), and vinyl (-CH=CH2) functionalities were used. One approach involved the reaction of -OH, -CHO, and -CH=CH2 functional OPVs with Si(100)/Si(111)-H and/or Si(100)/Si(111)-Cl functionalized surfaces. Subsequent reaction of the resulting Si(100)/Si(111)-OPV-CH2OH surfaces with p-tolyl isocyanate produced urethane containing monolayers in a "click like" approach. The monolayers were characterized by means of XPS, ATR-FTIR, AFM, and confocal fluorescence laser scanning microscopy (CFLSM). A second approach involved synthesizing Si(100)/Si(111)-OCH2CH2N3 functional surfaces from the Si(100)/Si(111)-H and/or Si(100)/Si(111)-Cl with HOCH2CH2N3, then using a "click reaction" to attach -CCH functional (alkyne) OPV to the surface-bound N3. The resulting monolayers were characterized by means of XPS, ATR-FTIR, AFM, and CFLSM. A third approach involved the synthesis of Si(111)-OCH2CH2OH functional surfaces from Si(111)-H and/or Si(111)-Cl with HOCH2CH2OH, and then using a "click like" reaction between the Si(111)-OCH2CH2OH functionalized surfaces and 1,4-phenylene diisocyanate (OCN-Ph-NCO) to afford Si(111)-U-Ph-NCO surfaces. Subsequent reaction of these with the -OH functional OPVs produced urethane containing OPV monolayers. The latter were characterized by means of XPS, ATR-FTIR, AFM, and CFLSM. The combined results presented in this thesis represent a further major advance in the controlled functionalization of Si-surfaces and herald a variety of potential applications that use such a combination of inorganic and organic semiconductors.

  • SYNTHESES OF ENEDIYNERIBOFURANOSIDES

    Author:
    Soosairaj Therese
    Year of Dissertation:
    2011
    Program:
    Chemistry
    Advisor:
    Panayotis Meleties
    Abstract:

    Enediynes are natural bacterial products isolated in the 1980s. They are characterized by nine- or 10-memberd rings containing two triple bonds separated by a double bond. These molecules have powerful antitumor activity. The enediyne moiety, which is often referred as "war head", undergoes Bergman cyclization to form a highly reactive 1,4-benzenoid diradical. These radicals cleave the DNA strand by hydrogen abstraction. Calicheamicin, esperamicin, dynemicin, and neocarzinostatin are some natural enediynes which are biologically active against Gram-positive and Gram-negative bacteria, Leukemia P388, Murine tumors P388, B16, Melanoma B16, and Tumor cells including L1210. Despite of their biological activity, the usefulness of natural enediynes as therapeutic agents have been limited due to their poor selectivity for the cancer cells. The structural complexity of the natural compounds also makes their synthesis cumbersome. So the quest for developing synthetic analogs by incorporating enediyne functional group on various substrates has been developed. Carbohydrate based enediynes have rarely been reported as templates for enediyne molecules. Careful study of the structures and biological activity of natural enediynes reveals that the carbohydrate part of these molecules plays a crucial role in the selectivity. So the goal of this research attempt is to design unique reaction schemes to synthesis a new class of enediynes on carbohydrate substrate such as ribose which are expected to have better selectivity for the target cell.

  • SYNTHESES OF ENEDIYNERIBOFURANOSIDES

    Author:
    Soosairaj Therese
    Year of Dissertation:
    2011
    Program:
    Chemistry
    Advisor:
    Panayotis Meleties
    Abstract:

    Enediynes are natural bacterial products isolated in the 1980s. They are characterized by nine- or 10-memberd rings containing two triple bonds separated by a double bond. These molecules have powerful antitumor activity. The enediyne moiety, which is often referred as "war head", undergoes Bergman cyclization to form a highly reactive 1,4-benzenoid diradical. These radicals cleave the DNA strand by hydrogen abstraction. Calicheamicin, esperamicin, dynemicin, and neocarzinostatin are some natural enediynes which are biologically active against Gram-positive and Gram-negative bacteria, Leukemia P388, Murine tumors P388, B16, Melanoma B16, and Tumor cells including L1210. Despite of their biological activity, the usefulness of natural enediynes as therapeutic agents have been limited due to their poor selectivity for the cancer cells. The structural complexity of the natural compounds also makes their synthesis cumbersome. So the quest for developing synthetic analogs by incorporating enediyne functional group on various substrates has been developed. Carbohydrate based enediynes have rarely been reported as templates for enediyne molecules. Careful study of the structures and biological activity of natural enediynes reveals that the carbohydrate part of these molecules plays a crucial role in the selectivity. So the goal of this research attempt is to design unique reaction schemes to synthesis a new class of enediynes on carbohydrate substrate such as ribose which are expected to have better selectivity for the target cell.

  • THIOGLYCOSYLATED PHORPHYRIN, CHLORIN, BACTERIOCHLORIN AND ISOBACTERICHLORIN AS PHOTODYNAMIC THERAPEUTIC AGENTS AND THEIR POSSIBLE USE AS BIOIMAGING AGENTS

    Author:
    Sebastian Thompson
    Year of Dissertation:
    2009
    Program:
    Chemistry
    Advisor:
    Dr. Charles Drain
    Abstract:

    Since first used about a hundred years ago, photodynamic therapy is now a well-established treatment for a variety of cancers and other diseases, and is emerging as new treatments for a broad range of other cancers, antibiotics, and antivirals. In terms of cancer therapy, a dye capable of photosensitizing the formation of singlet oxygen and/or producing reactive oxygen species is delivered to the cancer tissues. Upon activation by either a band or a specific wavelength of light, the reactive oxygen species produced will oxidize nearby biomolecules such as aromatic amino acids, double bonds in lipids, and nucleic acid with diffusion limited kinetics. The resulting oxidative stress induces necrosis or apoptosis depending on a variety of factors including degree and location of the damage. Currently, about four drugs are approved to treat several different types of cancer, these are porphyrinoids or porphyrin precursors, but none have cancer cell targeting motifs appended to the dye. To improve the photodynamic therapy efficacy, significant research is focused on development of new photosensitizers that may have advantages over the ones currently used. Major research thrusts include: (A) improving dye light absorption in the 650 nm - 850 nm region for activation deeper into tissues and tumors, (B) improve selectivity towards cancer cells, and (C) faster biodistribution and clearance from the body after treatments. Together with these objectives, it is also important to understand the mechanism of action in terms of how the photogenerated toxic species initiate the different pathways for cell death. This latter information is important for the design and development of new compounds, and to understand how the cancer cells respond to this method of treatment. Our lab developed a series of glycosylated porphyrins using a thioether linkage. The thioglycosylated phorphyrins are nonhydrolysable under physiological conditions and have been shown to be active photodynamic therapeutics, but only weakly absorb light above 650 nm. The chlorin, bacteriochlorin, and isobacteriochlorin derivatives are presented as new photodynamic therapy and dual-function imaging/therapeutic agents with photophysical properties that afford significant advantages over the parent compound, both in terms of light activation and imaging. The effectiveness of photodynamic treatment in initiating necrosis and apoptosis are analyzed and described. In addition, the isobacteriochlorin is presented as a two photon active compound, wherein it is activated by two photons between 780 nm and 880 nm. The two photon absorption property of the isobacteriochlorin is an important feature that allows optimal wavelengths to be used and is part of a burgeoning field in photodynamic therapy. Considering the different photophysical properties of this compound, the possibility to use this compound as a dual function bioimaging/therapeutic agent is discussed.

  • PALLADIUM-CATALYZED ARYL AMINATIONS OF HALO NUCLEOSIDES, PLATINUM-CATALYZED SYNTHESIS OF NEW BENZO[c]PHENANTHRENE DERIVATIVES AND SYNTHESIS OF A CIS RING-OPENED AMINO TRIOL FROM BENZO[a]PYRENE SERIES 1 DIOL EPOXIDE

    Author:
    Paul Thomson
    Year of Dissertation:
    2012
    Program:
    Chemistry
    Advisor:
    Mahesh Lakshman
    Abstract:

    Palladium-catalyzed aryl amination has been utilized for synthesis of N6-aryl adenosines from silyl-protected 6-bromo and 6-chloropurine nucleosides and arylamines. Analysis of conditions revealed that for chloro analogues, 10 mol% palladium acetate/15 mol% Xantphos/Cs2CO3 in toluene, at 100 ºC, was effective. For the bromo analogues 5 mol% Pd(OAc)2/7.5 mol% Xantphos was adequate. Generality of method was evaluated using a variety of arylamines. Synthesis of biologically relevant deoxyadenosine and adenosine dimers was then accomplished. This work compares the reactivities of 6-bromo and 6-chloropurine nucleosides in Pd-catalyzed aryl-amination reactions. Synthesis of novel 5-methylbenzo[c]phenanthrene, 4,5-dihydrobenzo[l]acephenanthrylene, and benzo[l]acephenanthrylene, as well as their putative dihydrodiol and diol epoxide metabolites, has been accomplished. These compounds are needed to understand the influence of substituents remote from the fjord region on molecular distortion, and to assess the metabolism and DNA damage as a function of molecular non-planarity. A new metal-catalyzed chemistry was utilized, and which complements known photochemical cyclization as a means to access such compounds. Briefly, Pd-catalyzed C-C bond formation of bromo benzaldehydes with naphthylboronic acids gave biaryl aldehydes. Corey-Fuchs olefination led to biaryl alkynes, which underwent platinum-catalyzed cyclizations to yield the requisite parent hydrocarbons and precursors to the putative metabolites. The metabolites display a diequatorial arrangement of the hydroxyls and X-ray crystallographic data showed decreases in the overall molecular distortion upon remote functionalization. Biological evaluation is anticipated to understand the effect of molecular distortion and subsequent cellular events. Diastereoselective synthesis of (±)-10β-amino-7β,8α,9β-trihydroxy-1,2,3-4-tetrahydrobenzo[a]pyrene was accomplished from (±)-7β,8α-dibenzoyloxy-1,2,3-4-tetrahydrobenzo[a]pyrene. This is required to synthesize nucleoside adducts produced by a cis ring-opening of benzo[a]pyrene diol epoxide 1. The dihydrodibenzoate was converted to the diol epoxide and then reacted with lithium chloride and acetic anhydride to give a peracyl trans chloro triol with a benzylic chloride. Displacement of chloride by azide, deprotection of acyl groups, and reduction of the azide afforded the requisite amino triol. This compound will be used to synthesize deoxyadenosine and deoxyguanosine adducts (the latter have not been synthesized to date).