Alumni Dissertations and Theses

 
 

Alumni Dissertations and Theses

Filter Dissertations and Theses By:

 
 
  • Weakly Measurable Cardinals and Partial Near Supercompactness

    Author:
    Jason Schanker
    Year of Dissertation:
    2011
    Program:
    Mathematics
    Advisor:
    Joel Hamkins
    Abstract:

    I will introduce a few new large cardinal concepts. A weakly measurable cardinal is a new large cardinal concept obtained by weakening the familiar concept of a measurable cardinal. Specifically, a cardinal κ is weakly measurable if for every collection A containing at most κ+ many subsets of κ, there exists a nonprincipal κ-complete filter on κ measuring all sets in A. Every measurable cardinal is weakly measurable, but a weakly measurable cardinal need not be measurable. Moreover, while the GCH cannot fail first at a measurable cardinal, I will show that it can fail first at a weakly measurable cardinal. More generally, if κ is measurable, then we can make its weak measurability indestructible by the forcing Add(κ, η) for all η while forcing the GCH to hold below κ. Nevertheless, I shall prove that weakly measurable cardinals and measurable cardinals are equiconsistent. A cardinal κ is nearly θ-supercompact if for every A that's a subset of θ, there exists a transitive M |= ZFC- closed under <κ sequences having the subset A and the cardinals κ and θ as elements, a transitive N, and an elementary embedding j: M -> N with critical point κ such that j(κ) > θ and j''θ is in N. This concept strictly refines the θ-supercompactness hierarchy as every θ-supercompact cardinal is nearly θ-supercompact, and every nearly 2θ-supercompact cardinal κ is θ-supercompact. Moreover, if κ is a θ-supercompact cardinal for some θ such that θ = θ, we can move to a forcing extension preserving all cardinals below θ++ where κ remains θ-supercompact but is not nearly θ+-supercompact. I will also show that if κ is nearly θ-supercompact for some θ ≥ 2κ such that θ = θ, then there exists a forcing extension preserving all cardinals at or above κ where κ is nearly θ-supercompact but not measurable. These types of large cardinals also come equipped with a nontrivial indestructibility result, and I will prove that if κ is nearly θ-supercompact for some θ ≥ κ such that θ = θ, then there is a forcing extension where its near θ-supercompactness is preserved and indestructible by any further <κ-directed closed θ-c.c. forcing of size at most θ. Finally, these cardinals have high consistency strength. Specifically, I will show that if κ is nearly θ-supercompact for some θ ≥ κ+ for which θ = θ, then AD holds in L(R). In particular, if κ is nearly κ+-supercompact and 2κ = κ+, then AD holds in L(R).

  • Special Representations, Nathanson's Lambda Sequences and Explicit Bounds

    Author:
    Satyanand Singh
    Year of Dissertation:
    2014
    Program:
    Mathematics
    Advisor:
    Melvyn Nathanson
    Abstract:

    {Let $X$ be a group with identity $e$, we define $A$ as an infinite set of generators for $X$, and let $(X,d)$ be the metric space with word length $d_{A}$ induced by $A$. Nathanson showed that if $P$ is a nonempty finite set of prime numbers and $A$ is the set of positive integers whose prime factors all belong to $P$, then the metric space $({\bf{Z}},d_{A})$ has infinite diameter. Nathanson also studied the $\lambda_{A}(h)$ sequences, where $\lambda_{A}(h)$ is defined as the smallest positive integer $y$ with $d_{A}(e,y)=h$, and he posed the problem to compute $\lambda_{A}(h)$ and estimate its growth rate. We will give explicit forms for $\lambda_{p}(h)$ for any fixed odd integer $p>1$. We will also solve the open problems of computing the term $\lambda_{2,3}(4)$, provide an explicit lower bound for $\lambda_{2,3}(h)$ and classifying $\lambda_{2,p}(h)$ for $p>1$ any odd integer and $h\in\{1,2,3\}$. }

  • Reducibility, Degree Spectra, ans Lowness in Algebraic Structures

    Author:
    Rebecca Steiner
    Year of Dissertation:
    2012
    Program:
    Mathematics
    Advisor:
    Russell Miller
    Abstract:

    This dissertation addresses questions in computable structure theory, which is a branch of mathematical logic hybridizing computability theory and the study of familiar mathematical structures. We focus on algebraic structures, which are standard topics of discussion among model theorists. The structures examined here are fields, graphs, trees under a predecessor function, and Boolean algebras. For a computable field F, the splitting set SF of F is the set of polynomials in F[X] which factor over F, and the root set RF of F is the set of polynomials in F[X] which have a root in F. Results of Frohlich and Shepherdson from 1956 imply that for a computable field F, the splitting set SF and the root set RF are Turing-equivalent. Much more recently, in 2010, R. Miller showed that for algebraic fields, if we use a finer measure, the root set actually has slightly higher complexity: for algebraic fields F, it is always the case that SF1 RF, but there are algebraic fields F where we don't have RF1 SF. In the first chapter, we compare the splitting set and the root set of a computable algebraic field under a different reduction: the bounded Turing (bT) reduction. We construct a computable algebraic field for which we don;t have RF1 SF. We also define a Rabin embedding g of a field into its algebraic closure, and for a computable algebraic field F, we compare the relative complexities of RF, SF, and g(F) under m–reducibility and under bT–reducibility. Work by R. Miller in 2009 proved several theorems about algebraic fields and computable categoricity. Also in 2009, A. Frolov, I. Kalimullin, and R. Miller proved some results about the degree spectrum of an algebraic field when viewed as a subfield of its algebraic closure. In the second chapter, we show that the same computable categoricity results also hold for finite-branching trees under the predecessor function and for connected, finite-valence, pointed graphs, and we show that the degree spectrum results do not hold for these trees and graphs. We also offer an explanation for why the degree spectrum results distinguish these classes of structures: although all three structures are algebraic structures, the fields are what we call effectively algebraic. Every lown Boolean algebra, for 1 ≤ n ≤ 4, is isomorphic to a computable Boolean algebra. It is not yet known whether the same is true for n > 4. However, it is known that there exists a low5 subalgebra of the computable atomless Boolean algebra which, when viewed as a relation on the computable atomless Boolean algebra, does not have a computable copy. In the third chapter, we adapt the proof of this recent result to show that there exists a low4 subalgebra of the computable atomless Boolean algebra B which, when viewed as a relation on B, has no computable copy. This result provides a sharp contrast with the one which shows that every low4 Boolean algebra has a computable copy. That is, the spectrum of the subalgebra as a unary relation can contain a low4 degree without containing the degree 0, even though no spectrum of a Boolean algebra (viewed as a structure) can do the same. We also point out that unlike Boolean algebras as structures, which cannot have nth–jump degree above 0(n), subalgebras of B considered as relations on B can have nth–jump degree strictly bigger than 0(n).

  • Dynamical Shafarevich results for rational maps.

    Author:
    Brian Stout
    Year of Dissertation:
    2013
    Program:
    Mathematics
    Advisor:
    Calyton Petsche
    Abstract:

    Given a number field $K$ and a finite set $S$ of places of $K$, this dissertation studies rational maps with prescribed good reduction at every place $v\not\in S$. The first result shows that the set of all quadratic rational maps with the standard notion of good reduction outside $S$ is Zariski dense in the moduli space $\Mcal_2$. The second result shows that if the notion of good reduction is strengthened by requiring a double unramified fixed point structure or an unramified two cycle, then one obtains a non-Zariksi density statement. The next result proves the existence of global minimal models of endomorphisms on $\PP^n$ defined over the fractional field of principal ideal domain. This result is used to prove the last main theorem- the finiteness of twists of a rational maps on $\PP^n$ over $K$ with good reduction outside $S$.

  • Motivic integration over nilpotent structures

    Author:
    Andrew Stout
    Year of Dissertation:
    2014
    Program:
    Mathematics
    Advisor:
    Hans Schoutens
    Abstract:

    This thesis concerns developing the notion of Motivic Integration in such a way that it captures infinitesimal information yet reduces to the classical notion of motivic integration for reduced schemes. Moreover, I extend the notion of Motivic Integration from a discrete valuation ring to any complete Noetherian ring with residue field $\kappa$, where $\kappa$ is any field. Schoutens' functorial approach (as opposed to the traditional model theoretic approach) allows for some very general notions of motivic integration. However, the central focus is on using this general framework to study generically smooth schemes, then non-reduced schemes, and then, finally, formal schemes. Finally, a computational approach via Sage for computing the equations defining affine arc spaces is introduced and implemented.

  • Stable Commutator Length in Amalgamated Free Products

    Author:
    Timothy Susse
    Year of Dissertation:
    2014
    Program:
    Mathematics
    Advisor:
    Jason Behrstock
    Abstract:

    We show that stable commutator length is rational on free products of free Abelian groups amalgamated over Zk, a class of groups containing the fundamental groups of all torus knot complements. We consider a geometric model for these groups and parameterize all surfaces with specified boundary mapping to this space. Using this work we provide a topological algorithm to compute stable commutator length in these groups. We then use the combinatorics of this algorithm to prove that for a word w in the (p, q)-torus knot complement, scl(w) is quasirational in p and q. Finally, we analyze central extensions, and prove that under certain conditions the projection map preserves stable commutator length.

  • Non-simple Closed Geodesics on 2-Orbifolds

    Author:
    Robert Suzzi Valli
    Year of Dissertation:
    2013
    Program:
    Mathematics
    Advisor:
    Ara Basmajian
    Abstract:

    Given a Fuchsian group Γ, that is, a discrete subgroup of the group of orientation-preserving isometries of the hyperbolic plane H, the quotient H/Γ is a 2-orbifold. If $Gamma$ contains torsion then the resulting 2-orbifold contains cone points corresponding to the elliptic fixed points. In this thesis we focus on minimal length non-simple closed geodesics on 2-orbifolds. Nakanishi, Pommerenke and Purzitsky discovered the shortest non-simple closed geodesic on a 2-orbifold, which passes through a cone point of the orbifold. This raises questions about minimal length non-simple closed geodesics disjoint from the cone points. We explore once self-intersecting closed geodesics disjoint from the cone points of the orbifold, called figure eight geodesics. Using fundamental domains and basic hyperbolic trigonometry we identify and classify all figure eight geodesics on triangle group orbifolds. This classification allows us to find the shortest figure eight geodesic on a triangle group orbifold. We then generalize to find the shortest figure eight geodesic on a 2-orbifold without cone points of order two.

  • Explicit Solutions of Imaginary Quadratic Norm Equations

    Author:
    Sandra Sze
    Year of Dissertation:
    2015
    Program:
    Mathematics
    Advisor:
    Victor Kolyvagin
    Abstract:

    Let $K=\mathbb{Q}(\sqrt{-d})$ be an imaginary quadratic extension of $\mathbb{Q}$. Let $h$ be the class number and $D$ be the discriminant of the field $K$. Assume $p$ is a prime such that $\displaystyle\left(\frac{D}{p}\right)=1$. Then $p$ splits in $K$. The elements of the ring of integers $\mathcal{O}_K$ are of the form $x+\sqrt{-d}y$ if $d\equiv1,2\pmod{4}$ and $\displaystyle x+\frac{1+\sqrt{-d}}{2}y$ if $d\equiv3\pmod{4}$, where $x$ and $y\in \mathbb{Z}$. The norm \\$N_{K/\mathbb{Q}}(x+\sqrt{-d}y)=x^2+dy^2$ and $N_{K/\mathbb{Q}}\left(\displaystyle x+\frac{1+\sqrt{-d}}{2}y\right)=\displaystyle\frac{(2x+y)^2}{4}+\frac{dy^2}{4}$. In this thesis, we find the elements of norm $p^h$ explicitly. We also prove certain congruences for solutions of norm equations.

  • Endomorphisms of n-dimensional projective space over function fields

    Author:
    Michael Tepper
    Year of Dissertation:
    2009
    Program:
    Mathematics
    Advisor:
    Lucien Szpiro
    Abstract:

    Let K=k(C) be the function field of a complete nonsingular curve C over an arbitrary field k. The main result states an endomorphism of 1-dimensional projective space over K is isotrivial if and only if it has potential good reduction at all places v of K. This generalizes results of Benedetto for polynomial maps on 1-dimensional projective space over K and Baker for arbitrary rational maps on 1-dimensional projective space over K. There are two proofs given. The first uses algebraic geometry and more specifically, geometric invariant theory. It is new even in the case of 1-dimensional projective space over K. The second proof, using non-archimedean analysis and dynamics, more directly generalizes proofs of Benedetto and Baker for the N=1 case. In addition, two applications for the result are given.

  • Lean, Green, and Lifetime Maximizing Sensor Deployment on a Barrier

    Author:
    Peter Terlecky
    Year of Dissertation:
    2014
    Program:
    Mathematics
    Advisor:
    Amotz Bar-Noy
    Abstract:

    Mobile sensors are located on a barrier represented by a line segment, and each sensor has a single energy source that can be used for both moving and sensing. Sensors may move once to their desired destinations and then coverage/communication is commenced. The sensors are collectively required to cover the barrier or in the communication scenario set up a chain of communication from endpoint to endpoint. A sensor consumes energy in movement in proportion to distance traveled, and it expends energy per time unit for sensing in direct proportion to its radius raised to a constant exponent. The first focus is of energy efficient coverage. A solution is sought which minimizes the sum of energy expended by all sensors while guaranteeing coverage for a predetermined amount of time. The objective of minimizing the maximum energy expended by any one sensor is also considered. The dual model is then studied. Sensors are equipped with batteries and a solution is sought which maximizes the coverage lifetime of the network, i.e. the minimum lifetime of any sensor. In both of these models, the variant where sensors are equipt with predetermined radii is also examined. Lastly, the problem of maximizing the lifetime of a wireless connection between a transmitter and a receiver using mobile relays is considered. These problems are mainly examined from the point of view of approximation algorithms due to the hardness of many of them.