Alumni Dissertations

 

Alumni Dissertations

Filter Dissertations By:

 
 
  • AUDITORY PROCESSING OF COMPLEX TONES IN NEWBORN INFANTS

    Year of Dissertation:
    2010
    Program:
    Biology
    Advisor:
    BERNARD KARMEL
    Abstract:

  • AUDITORY PROCESSING OF COMPLEX TONES IN NEWBORN INFANTS

    Year of Dissertation:
    2010
    Program:
    Biology
    Advisor:
    BERNARD KARMEL
    Abstract:

  • Abstract:

  • AUDITORY PROCESSING OF COMPLEX TONES IN NEWBORN INFANTS

    Year of Dissertation:
    2010
    Program:
    Biology
    Advisor:
    BERNARD KARMEL
    Abstract:

  • AUDITORY PROCESSING OF COMPLEX TONES IN NEWBORN INFANTS

    Year of Dissertation:
    2010
    Program:
    Biology
    Advisor:
    BERNARD KARMEL
    Abstract:

  • AUDITORY PROCESSING OF COMPLEX TONES IN NEWBORN INFANTS

    Year of Dissertation:
    2010
    Program:
    Biology
    Advisor:
    BERNARD KARMEL
    Abstract:

  • AUDITORY PROCESSING OF COMPLEX TONES IN NEWBORN INFANTS

    Year of Dissertation:
    2010
    Program:
    Biology
    Advisor:
    BERNARD KARMEL
    Abstract:

  • AUDITORY PROCESSING OF COMPLEX TONES IN NEWBORN INFANTS

    Year of Dissertation:
    2010
    Program:
    Biology
    Advisor:
    BERNARD KARMEL
    Abstract:

  • Cologne Carnival's "Alternative" Stunksitzung: Carnivalization? Meta-Carnival? Or Bakhtinian Restoration?

    Author:
    Erik Abbott
    Year of Dissertation:
    2014
    Program:
    Theatre
    Advisor:
    Marvin Carlson
    Abstract:

    In the 1820s, Carnival in Cologne, Germany, underwent a series of reforms, ostensibly to bring the festival back to the people. Among the traditions that developed was the Sitzung, a theatrical variety-show event, with music, comic speeches and sketches, dance troupes, and various additional Carnival-related entertainments. The shows, and Carnival itself were, and largely have been since that time, mostly overseen by a Festival Committee and the official Carnival Societies it recognizes. In 1984, a group of mostly students decided to create their own version of a Sitzung, an alternative version, the Stunksitzung. From three inaugural performances, it has grown to presenting over forty performances a year to sell-out crowds of one thousand people per night and to being a popular annual television event. This dissertation considers the history of the Stunksitzung within a frame of Mikhail Bakhtin's work on Carnival. I examine over two-dozen performance pieces of the Ensemble, and compare and situate the production and its history within Cologne Carnival, in particular the broader dichotomous status of the official versus the alternative, interrogating how alternative the production is, has been, and continues to be. Ultimately, I frame the Stunksitzung within the larger context of Carnival and the particular status it holds in Cologne.

  • ANALYSIS AND IMPLEMENTATION OF SIGNAL PROCESSING STRATEGIES FOR A 3-D DOPPLER LIDAR WIND PROFILER

    Author:
    Sameh Abdelazim
    Year of Dissertation:
    2012
    Program:
    Engineering
    Advisor:
    Sam Ahmed
    Abstract:

    A heterodyne detection fiber optic based wind lidar system has been developed and tested, which benefits from unique field programmable gate array (FPGA) signal processing techniques and leverages devices from the telecommunication industry to make it particularly cost efficient. A narrow band stabilized fiber laser, polarization maintaining fiber amplifiers, acousto-optic modulators and an optical circulator comprise the transmitter which is coupled to free space using refractive optics. The collinear propagating lidar return signal that scatters off of atmospheric aerosols and in a heterodyne arrangement beats with a local oscillator and is then detected using a shot noise limited polarization maintaining balanced receiver. The system, which operates at a 20 kHz pulse repetition rate and acquires lidar return signals at 400 MSample/second, accumulates signals that are as much as 20 dB lower than the receiver noise power by using embedded programming techniques. For this reason two FPGA embedded programming approaches are considered and compared. In the first approach, the acquired return signal is gated in time and the square modulus of the fast Fourier transform is accumulated for each range gate, producing a series of power spectra as a function of range. Wind speed estimates based on numerical estimators can then be made after transferring the range gated accumulated power spectra to a host computer, enabling line of sight wind speed to be calculated as a function of range gate and stored for additional processing. In the second FPGA approach, a digital IQ demodulator and down sampler reduces the data flow requirements so that an autocorrelation matrix representing a pre-selected number of lags can be accumulated, allowing for the process of range gating to be explored on the host computer. The Fourier transform of the autocorrelation produces the power spectrum and, in the same manner as the first approach, estimates can then be made regarding the line of sight wind speed. The added feature of the second approach is that it allows for an additional capability to adjust the range gate period dynamically as the state of the atmospheric boundary layer (e.g. backscatter coefficient and stability condition) changes. A simple manual beam scanning technique is used to sample three line of sight directions and, by making suitable assumptions regarding the coherence of the averaged wind fields, the three dimensional wind field vector (representing both the horizontal wind speed and direction and the vertical wind speed and direction) is calculated and graphically displayed on time-height cross section plots. Precision in the velocity measurements is estimated to be on the order of 0.08 m/sec and the precision in the measured horizontal wind direction is estimated to be to be about 2 degrees, where both of these estimates are made assuming a relatively short 3-beam cycle time (less than 2 minutes) and a typical backscatter coefficient and atmospheric stability condition. A comparison to other observed wind information is presented which indicates that this lidar will open new doors for the practical characterization of microscale meteorology.