In the spring of 1922, Ramsey read a paper to the Apostles of Cambridge in which he discussed two related questions. As he states it:

“[W]hat types of things there are, and the nature of truth.” (p. 1)

The two questions remain open questions at the end of the paper, but in the course of the discussion they are related to each other in ways that are surprising. It is his discussion of the interconnection of these two issues that reveals a hidden depth to Ramsey’s view of truth. His claim is that the idea that “true” is an incomplete symbol and the idea that the world is simple are part of the same view (p. 8). The account that is discussed in this early paper is significantly different from the “redundancy” theory of truth that he is usually taken to endorse. It should be noted however that although his remarks are deftly though sketchily provided, it is a carefully considered view, a lot of which gets support from later things he wrote about truth.

Since this paper is relatively early, it’s difficult to say that it represents his final view on either of these two subjects. Although the bulk of his paper is devoted to explaining the consequences of taking the world to be simple rather than complex, and the consequences for truth in particular is a theory that makes “true” an incomplete symbol, it is nonetheless a view which can be held without resting on the simplicity thesis. And I believe that Ramsey’s continued acceptance of the incomplete symbol account helps to explain why he thought of truth as something that would be easily obtained from an adequate account of belief ascription.2

1 I am grateful to Mrs. Jane Burch, Ramsey’s daughter, for her most kind permission to quote from Ramsey’s typescript which is on deposit in the King’s College Archives. The nine page typescript with Ramsey’s corrections inked in is dated April 29th, 1922 (FPR/4/1). Special thanks are due to Hugh Mellor, Nils-Eric Sahlin N. Rescher, Dr. R. Moad, Archivist of King’s College Cambridge, and the members of the Seminar on Ramsey at the Graduate Center, CUNY.

2 I hope to make this connection evident on another occasion.
The first question, What kinds of things are there? is clearly ontological, but in a sense other than the familiar Quinean way of setting the matter. It asks a question which Quine’s criterion does not pretend to answer. Ramsey first notes that there are lots of things and types of things. Simplicity concerns

“[t]he only things in whose existence we have reason to believe, are simple, not complex.”

Ramsey says that he got the view that everything is simple from Russell in conversation and doubts that he would have thought of it alone. It’s a view a little reminiscent of those who think of ontology as consisting of the basic “furniture” of the world, the simple things; not the complex ones. Ontology is concerned with the simples; anything else being “made up” from them or “constituted by” or “constructed out” of them. None of these terms are used by Ramsey, but some of them were certainly used by Russell. The underlying idea seems to be that nothing would exist if the simples didn’t. On the Quinean view, we can consider the ontology of certain properly formulated or regimented theories of the world, but those theories, no matter how well supported, do not tell you that they are the basic entities. For example, according to the Quine Criterion of Ontological Commitment, a theory of electrons such as Lorentz’s, Weber’s, Kaufmann’s, or Dirac’s, implies that there are electrons. However, none of those theories implies that if the electrons it speaks of didn’t exist, then nothing would. None of those theories implies that the electrons it speaks of are the basic simple constituents of the world. It’s clear then that whatever the Quinean commitments of a theory may be, they do not automatically identify exactly those things that are the basic simple existents. In fact, it looks as if the Quinean Criterion could not be used to determine exactly the basic simples. If that’s what the criterion did, then any two theories exactly one of which implied the other would have to have exactly the same Quinean ontological commitment. There are just too many examples of scientific theories for which this just isn’t so.

The Quinean Criterion won’t help settle what the simples are. Ramsey does however furnish a list of the kinds of things that he thinks are simple and those that are complex. Given his way of sorting things out there is an implication for truth. Here’s Ramsey’s list:

“If you were making a list of the types of things that there are you would naturally enumerate the following: individuals or particular things, classes, proper-
ties, relations and facts. Further you might distinguish complex properties and relations from simple ones; for example to be yellow is a simple property, to be taller than I am, and to be liked by most people are complex properties. You might then group together individuals and simple properties and relations as being simple, and classes, complex properties and relations, and facts as being complex. So in saying that everything in whose existence we have reason to believe is simple, I mean that there are no classes, complex properties or relations, or facts; and that the phrases which appear to stand for these things are incomplete symbols.” (pp.1-2).

Ramsey then noted that two parts of the simplicity thesis, one covering classes and the other covering facts, had already been addressed. Russell put forward the theory that terms that stand for classes are incomplete symbols in his and Whitehead’s *Principia Mathematica*, and Ramsey understood a fact to be an “entity which consists in the possession of a property by a term or in the holding of a relation between terms …” and claimed to have defended at length in an earlier paper, the theory that there are no facts.\(^3\) Ramsey noted two arguments for the existence of facts one of which assumes that fact are events. He has an argument against that identification which we shall not consider here.\(^4\) The second argument against the existence of facts is relevant to truth. It assumes that facts are assumed in a type of correspondence theory of truth (“[F]acts are entities to which our beliefs correspond when true, and do not correspond when false, …” (p.2)), and as we shall see, Ramsey proposes a view of truth that undermines any belief in facts that are required by a correspondence theory.

Leaving the existence of classes and facts to one side, Ramsey focuses on what he takes to be the weak point of the theory that everything is simple—that there are no complex relations or properties. He opens the discussion of what the consequences would be if there were no complex relations or properties by considering the proposition

\(^4\) The identification of events and facts is clearly false according to Ramsey because it implies the absolute theory of time. This is an intriguing ground upon which to refute a philosophical claim, and as far as I can determine, it was only Ramsey who saw the connection. This argument already occurs in the earlier talk, “The Nature of Propositions” published in *On Truth* of Rescher and Majer.
1) A is before B.

He takes this as an assertion that a relation ‘before” stands holds between the terms A and B. It seems natural enough to go on to make further statements

2) All the things which are before B are before C.
3) Some of the things which are before B are after D.
4) The things which are before D are more than 10 in number.

So one might think that there is this complex property “being before B” that we are talking about. If it exists, then in addition to proposition (1) there will be different propositions about the complex property, namely

5) A has the property of being before B, and
6) B has the property that A is before it.

which involve the complex property (if it exists) of being preceded by A.

These three different propositions, (1), (5) and (6) will appear again some three years later in Ramsey’s well-known published paper Universals (1925). The three constitute what Ramsey there calls an “incomprehensible trinity, as senseless as that of theology”. The senslessness consists in this observation: If the three propositions say the same thing then they presumably have the same meaning. However the propositions cannot have the same meaning because each of them has a constituent which each of the other does not. Thus (1) has three constituents: A, B, and the relation R, (5) has two constituents: A and the complex property [RB] (being before B), and (6) has two constituents: B and [AR] (being after A). In Universals he lays the blame for this incomprehensible trinity squarely at the feet of the theory of complex properties or complex universals as he sometimes calls them. In fact, he thinks that his three-in-one argument is a reductio ad absurdum of the theory of complex properties.5

In the present Apostles paper however, he seems to have left it open as to whether there are or aren’t complex properties. Ramsey considered the consequences for truth under each of those possibilities. First, if it is assumed that there are complex properties, then beside the proposition that A is before B,

“there will be the different propositions “A has the property of being before B” and of course, “B has the property that A is before it.”(p.4).

Ramsey takes the three propositions to be related to each other by a special relation (in the later *Universals*, he says only that they are “closely related”)\(^6\), such that no proposition can be related to the others in this special way unless it is a member of the set. So the relation is an example of an equivalence relation, and Ramsey says that the three propositions are equivalent to each other.

This might not be surprising. One might have thought that all three say the same thing, or that they mean the same thing, or that they are the same proposition, or that they logically imply each other. All these relations are examples of equivalence relations. But this special relation which Ramsey calls “equivalence” is none of the above. And that is surprising. He says

“[I] shall use the word “equivalent”\(^7\) to stand for this relation, and not its usual logical sense, meaning implying and implied by. This relation equivalence will, I think, have to be taken as indefinable and we should define in terms of it what we mean by calling a property \(\phi\)\(^8\) the property of being before B. For we cannot do this by defining A has \(\phi\) to mean the same as A is before B, since “A has \(\phi\)” is not to mean the same as “A is before B” but only something equivalent to it.”(p.4)

It is evident that Ramsey was aware that the propositions were not the same since no two have the same constituents. That’s obviously the basis for denying that “A has \(\phi\)” means “A is before B”. What is striking are his additional two claims: the first is the idea that the equivalence relation between them is taken to be indefinable (Let us use the “\(=\)” to stand for the indefinable equivalence relation on propositions that Ramsey proposed.), and the second is that the concept of certain complex properties (if there are any) should be defined in terms of “\(=\)”.

The indefinability of the equivalence relation is not evident. I suppose that some would say, with a certain amount of justice, that the equiva-

\(^7\) I have added the quotation marks (A.K).
\(^8\) In the text Ramsey used the expression “phi” for the Greek letter.
lence relation itself not evident either. At most Ramsey has argued that the obvious way of defining the complex property of being before B would be to define “A has the (complex) property of being before B” as given by “A is before B”. However, that won’t work because these propositions do not have the same meaning. I think that this puts people on notice. The idea that there are complex properties requires the use of an indefinable equivalence relation on certain sets of propositions. The requirement of indefinability staves off an obvious objection, though he doesn’t mention it – perhaps because it is so obvious. It is self-defeating to try to establish the existence of complex properties if one uses complex equivalence relations to do so. In fact there is a much deeper problem which Ramsey does not mention. It rests on a claim that he makes later in his paper (p.8), but could just as easily been mentioned earlier. Recall that the idea that the world is simple includes the thought that

“there are no classes, complex properties or relations, or facts; and that the phrases which appear to stand for these things are incomplete symbols.” (pp.1-2).

Implied of course is the view that there could in this simple world be simple properties and relations. Hence his special indefinable equivalence relation might get to qualify as simple on the grounds of its indefinability. However it is also evident that Ramsey thought that if everything in the world is simple, then

“[We] are supposing there to be no complex things such as propositions …” (p.8).

The immediate problem then is that it seem impossible to follow Ramsey’s suggestion that although the equivalence relation “≈” is indefinable, the particular complex property of being before B ought to be defined in terms of it. How is that to be done? Here is one natural way which might do it – though I hasten to add that it is not suggested by Ramsey. In fact he offers no help to the friends of complex properties which is in keeping with the overall point of his paper. We might “define” the complex property of being before B with the help of two clauses:

\[\varphi(X) \equiv X \text{ has the property of being before } B, \text{ and } \]
\[\varphi(X) \approx X \text{ is before } B, \text{ for all } X. \]

Thus X has the property \(\varphi \) if and only if it has the property of being before B, and the proposition that X has \(\varphi \) is equivalent to the proposition that X is before B. It avoids the objections that Ramsey had to the natural way of defining this particular complex property, since it does not require that \(\varphi(X) \) and “X is before B” have the same meaning; it requires only that they are equivalent.

Although this “definition” is not an explicit definition involving sameness of meaning or mutual implication, it can be seen as an implicit definition that uses the equivalence relation. This kind of definition can be explained as follows: Let propositional functions be those functions that assign propositions to objects.\(^{10}\) A condition on propositional functions will be said to define a propositional function implicitly if and only if any two functions that satisfy that condition are equivalent. Now it is evident that if \(\phi \) and \(\psi \) are two propositional functions satisfying the schema above, then it follows that they are equivalent: that is, \(\varphi(X) \approx \psi(X), \) for all X. Consequently, the schema implicitly defines the property of being before B. It is also Ramsey’s idea that the equivalence relation, in a complex world in which it exists, has a central role in the construction of an implicit definition of truth. We shall say more about this below.

In stark contrast, Ramsey’s view is that in a simple world the special equivalence relation doesn’t exist. It doesn’t matter that the equivalence relation is indefinable and therefore simple. There isn’t any equivalence relation in a simple world because the equivalence relation is a relation between propositions and in a simple world, there aren’t any of those.

“[T]here will not be this relation of equivalence. “A has the property of being before B” will be another verbal expression of the relational proposition “A is before B”.\(^{11}\)(p.4)

9 The variable ranges of course only over those things which can be related by the temporal relation.
10 This notion is familiar from its use in Whitehead and Russell’s *Principia Mathematica*, and familiarly criticized and emended in Ramsey’s “The Foundations of Mathematics” in *Ramsey [1990]*.
11 I have added the closing quotation mark. A.K.
As we shall see below, Ramsey said something similar about truth: if the world is simple, he held “[T]hat p is true is merely a different verbal form for p.” (p.8)

However Ramsey thought that this verbal equivalence is not the end of the matter, and he offers, as we shall presently see, a more complicated account of truth if the world is simple. There are in effect two accounts of truth on offer; one if the world is simple world, and another if it is complex.

There’s no doubt that Ramsey thought that it was entirely possible that the world was simple rather than complex, and that there were objections to it that he did not know how to answer, though he believed that “[A]n answer can be found by anyone who has sufficient ingenuity and patience.” (p.1). In this short paper he gives an account of what he took to be the major objections to the simplicity thesis, and sketches some lines of possible defense. It is worthwhile reviewing them before turning finally to his analysis of how truth is to be understood in either case.

Ramsey devoted several pages (pp.4 – 8) to a kind of indispensability argument for the existence of complex properties which he sought to defuse. These arguments supposedly support the existence of complex properties and relations on the grounds that they are needed as possible constituents for the analysis of certain propositions. He considered three possible cases. They turn out to be ones for which he later developed theories that became his signature discoveries. The first concerns universal and existential quantification over properties, the second concerns probability statements, and the third concerns belief statements.

Concerning the universal and existential quantification of properties, “∃ϕ” and “∀ϕ”, Ramsey considered the statement that A has some property which he formulated as “((∃ϕ) (ϕA))”. The variables ranged over functions – in this case propositional functions. Two questions arise. Is the form that Ramsey used so central and important that, if an analysis of it required complex properties, then that would be a strong argument for their existence? And the second: If it is assumed that the world is simple, then

12 We know that approximately some seven years later (1929), in the unpublished paper *Theories* in Ramsey (1990), something close to this kind of existential generalization of properties, the Ramsey Sentence, was proposed as the best way of presenting our theories. Coupled with the requirement that the world is simple, it would rule out the theoretical use of those concepts of modern science that fail to be simple, disjunctions of the simple or truth functions of the simple.
what if the property that A is supposed to have is analyzed as an enormous disjunction. Would that present problems for the simplicity thesis. As he states the case for “(∃ϕ) (ϕA)”,

“On our view this could not be taken as an unanalysable statement unless the property had to be simple or what is ordinarily called a quality. If we meant to include in our statement relational properties also we should have to analyze “A has some property” as a complicated alternative “Either A has some quality, or has some two termed relation to some term or some three termed relation to some two terms or … etc.”(p.5)

Thus, if A has some property, then the analysis would attribute a simple property to A or else there would be a disjunction of simple binary, ternary, n-termed relations, such that at least one of them related A to other terms. The property and various disjuncts would be simple and not complex—if the world were simple. The imposition of a theory of types would lead to other qualifications, because the proposition that A has some property has to be understood as a property of a definite type.13 Ramsey notes one further complication. What if what was predicated didn’t consist of a relation of A to a term, of a definite type. Ramsey notes one further complication. What if what was predicated didn’t consist of a relation of A to a term,

“[B]ut in not having a relation or in having one relation if not another.”

That is, suppose that what was predicated of A was a truth function of certain (simple) relations. If the negations of relations as well as conditionals, conjunctions, disjunctions and universal and existential quantifications of them were needed to express the analysis of a true statement such as “(∃ϕ) (ϕA)” (“A has some property”), then there would be reason to think that the world was not simple. Not if one had to admit such complex entities. It’s a serious difficulty. In fact Ramsey says (p.5)

“[W]e have to make some extra allowances for the truth functions; I do not see exactly how to do this but I don’t think much ingenuity would be required; if it prove impossible our theory will only have to be amended so far as to allow

13 Something like an infinite number of appropriately typed questions would have to replace the original proposition. Ramsey is well aware of that difficulty.
certain complex properties and relations, namely such as can be constructed from simple ones by using truth functions only.”

At worst then, a theory that our world is simple would require that all properties and relations be simple or else truth functional compounds of simple properties and relations. Of course this adjustment to the theory could be made. It looks like an adjustment in the notion of simplicity to allow for a certain manageable amount of complexity. However if one added to the adjusted theory an account of properties and relations according to which the truth-functional compounds of properties and relations needn’t in general be a property or a relation, then there is genuine conflict. The modification makes room for complex properties and relations. However if these don’t exist, then there’s nothing for which we need to make room.

The upshot of these considerations seems to be that although there are difficulties that can be raised against Russell’s simplicity thesis, Ramsey seems to think that some might be settled without requiring much ingenuity—though he says that he does not see how at the moment just how. Some can be settled with a little adjustment of the simplicity thesis itself, while others (like the infinitely complicated analyses that would be required by type theory) may only be apparent. The implication is that although there are serious problems in giving an analysis of the proposition that A has some property, the simplicity thesis is still a viable position.

There is a very brief section in the Apostle 1922 paper that considers how probability statements fare in the face of the simplicity thesis. Ramsey says that assertions of probabilities “are relations between two propositions: the premise and the conclusion” (p. 6). This of course reflects Keynes’ view (1921) of logical probability in its use of the language of premises and conclusion.\(^\text{14}\) Ramsey’s discovery of so-called subjective probability was developed in his 1926 unpublished paper, “Truth and Probability”\(^\text{15}\) some four years later than the present remarks, which, as Richard Braithwaite noted, “was written deliberately as a constructive criticism of Keynes’ view.”\(^\text{16}\) In this essay however, Ramsey raises the fol-

\(^{14}\) Cf. Keynes in *Treatise on Probability*, Chapter 10, section2, “[P]robability is concerned with *arguments*, that is to say, with the ‘bearing’ of one set of propositions upon another set.”

\(^{15}\) Mellor (1990), pp.52-96.

lowing difficulty against Keynes’ account of probability: Propositions asserting probabilities are relations between propositions so in any such assertion there would be three propositions, and about those, Ramsey says that

“[P]ropositions would be complex if there were any; I think they would be the complex properties of thoughts which we assert of thoughts that they are beliefs that this proposition (sic)\(^1\) so if we are to hold that there are no complex entities we must provide some other analysis of probability propositions. Obviously we must say that “φ has probability α given h” asserts a multiple relation between the constituents of P(φ ?). The difficulty only occurs in connection with the laws of probability. Our analysis of (abh) \(\frac{ab}{h} = \frac{b}{ah} \cdot \frac{a}{h}\) will have to be infinitely complicated because of the infinite number of the possible forms for a, b, and h.”\(^1\) (pp.6-7).

The problem for probabilities in the account of Keynes (and W.E. Johnson) is that the basic statements of their theories of probability is that they are propositions that consist of relations between propositions. If, however, propositions are complex entities, and simplicity implies that there aren’t any propositions, then these theories are in trouble. There is nothing for them to relate. This looks like a very hard problem to solve, for as Ramsey noted, “[It] requires another analysis of probability propositions”, if simplicity is to be defended. Yet Ramsey continues with this optimistic response:

“But this should not be an insuperable obstacle; for if we accept the theory of types we can only make general statements about propositions if the propositions are of definite type; and with this limitation the various cases should be quite manageable.”(p.7).

It’s not obvious what the new analysis of probability propositions is supposed to be. One can only guess, but I believe something like the kind of solution advocated about phrases like “all properties” and “some properties” mentioned above might be appropriate. That is, one should try to arrange the propositions that enter into probability relations into some kind

\(^1\) This occurrence of “sic” is Ramsey’s insertion.

\(^1\) In a more modern notation this particular law of probability would be \(P((A \land B)/H) = P(B/A \land H) \times P(A/H)\) (for all A, B, and H), so as to retain the idea that all probabilities are relational, where “P(A/B)” stands for the probability of A, given B. This law is sometimes called the Multiplicative Law of probability.
of inductive order according to type, and within each type spell out the laws of probability allowing for the truth functional complexity of propositions generated from simple propositions, as was done in his discussion of the analysis of phrases like “A has some property”. In that way complex propositions like the conjunction of A and B involved in the expression of the Mutiplicative Law of Probability just described, can be discounted as complex by adjusting the notion of simplicity so as to allow the use of simple propositions and all truth functional and perhaps quantificational compounds of them as “simple”. This would be done at each type. The prospects look promising because of the way that the theory of probability is usually presented (at least in the finite case where infinite summability is not required). The reason is that the theory so restricted is concerned with finite sample spaces on which probabilities are specified, and then extended to subsets of the space which are elementary set-theoretical constructions out of the unit sets of the space. Since these constructions correspond to truth functional operations, the finite case looks plausible. Of course there still remains the probability propositions that relate these propositions. They too run up against the simplicity thesis of Russell, unless the probability relation is taken to be simple. This is the case for Keynes’ account: it’s not a defined notion. It’s not as if there were absolute probabilities and relational probabilities were defined in terms of them; the relational probabilities are basic. So it looks as the problem of complex entities in the theory of probability can be handled if we can manage the cases of the propositions which probability relates. Anyway that’s one strategy for defending simplicity against the needs of probability theory. Ramsey seemed to think that simplicity could be defended with a reformulation of the theory of probability.

The third objection to the simplicity thesis raised by Ramsey, is that analyses of propositions about belief might require complex entities. His discussion is compressed, but the net effect of the various considerations that he raises seems to be that here too there is no threat to the simplicity

19 One gets the feeling from Ramsey’s attempt to reconcile probability theory with the simplicity thesis, that a certain amount of complexity even though infinite, would be all right provided that it could be “managed”. It would be acceptable by revising the notion of simplicity to discount the truth-functional kind of complexity.

20 It may have been more than a strategy. Ramsey wrote (p.7) that with type theory in place, treating the cases of complex propositions for each type would involve in arranging them “in a series similar to that of the cardinal integers in order of magnitude in which each term is formed from the last by a definite law. Wittgenstein has invented a notation containing such a series of cases.”
thesis. He notes first that it’s difficult to see how the analysis of “The cat is on the hearthrug” or “God exists” avoids the use of complex entities. In a particular case it might appear that appeal to complex entities would yield a satisfactory analysis. He gives the example of his belief that A is before B. That belief would be related to three constituents: A, the property of being before B (Bef_B), and a second order property, that of having the property Bef_B. Leastways, this is only a gloss of how he thinks of belief, if there were complex properties.

“If my belief is a belief that A is before B, how are we to analyze that; if we believed in complex properties we could say that my belief was multiply related to the property of being before B and the property of being possessed by something, which the former property was asserted to have.”(p.7)

However if there aren’t any complex properties, Ramsey thought that his belief would be a relation to B (sic), to the relation “before”, and perhaps to a “mysterious thing”, a logical form. But that way of dealing with beliefs without appeal to complex entities is very difficult to achieve because of the enormous number of logical forms that can be constructed, and what he calls “the problem of the constituents of mathematical propositions.” Essentially, because of the infinite complexity of the number of constituents and logical forms that would be involved in mathematical beliefs, an appeal to type theory (as in the other cases) to make the variety of cases tractable, would be implausible. He rejects this program as misguided for

“[I]t rests on the assumption either that there are one or many indefinable belief relations, or that if they are definable it is possible to settle their logical form first and define them afterwards. It seems to me unlikely that there are any such indefinables, that somewhere in the course of evolution, an animal “thought” in unanalysable sense [sic] for the first time” (p.8)

If there were these indefinable belief relations, then even though there might be infinitely many of them, it might be thought that they are not a source of complexity precisely because they are indefinable. Ramsey rejects that line of argument: he thought that there weren’t any such primitive belief relations.

There is another way in which an analysis of belief could introduce complex entities. Ramsey thought that belief might be analyzed or defined, using other, simpler relations. He mentions that both Russell and
Mr. Richards21 tried to analyze belief using causal relations.22 Presumably such a causal analysis would make it evident that the belief relation is itself a complex relation. Ramsey doesn’t consider the specifics of any of the attempts. He dismisses this particular argument for complexity by admitting that neither Russell nor Richards have had “considerable success” with causal theories. (p.8). It is the lack of a successful causal theory of belief, the poor understanding of the notion of cause, and the belief that a causal theory would be the business of psychologists that Ramsey concluded that “[D]ifficulties based on the nature of thought were not a very strong ground for rejecting the theory that everything is simple.”(p.8)

We turn finally to Ramsey’s consideration of truth, given the constraint that the world is simple. In fact he sketches a subtle disjunction of two scenarios. The first case concerns the case when simplicity prevails. There are no complex things and no propositions. The second case is the one in which simplicity doesn’t prevail—at least to this extent: there are complex entities, including propositions.

In this first scenario, Ramsey argues that “truth” is an incomplete symbol, and is not the name of a property. The second scenario concerns what truth comes to if there are propositions. Here Ramsey argues that truth is a property, indeed, a simple property, and has a striking account of why this is so. Whichever of the scenarios prevails, it is clear that Ramsey’s view on truth is not a simple redundancy view. We turn next to consider the arguments that Ramsey sketched.

Where simplicity prevails, Ramsey’s argument that “truth” is an incomplete symbol begins this way:

“Suppose that we take it that everything is simple. Then I say that p is true is merely a different verbal form for p.23 If however, we consider “He’s said something true” we cannot dispose of the matter so easily as this.”(p.8)

So it’s evident that Ramsey is not advocating a redundancy theory for presented statements or propositions, while relegating the other cases to the

21 Presumably I.A. Richards.

22 It’s one of those remarkable philosophical twists that Russell is both the inspiration of the simplicity thesis of Ramsey’s paper, and also a possible underminer of that thesis.

23 Ramsey left out the usual quotation marks. After all it’s a paper for reading to the Apostles; not for the editor of Mind.
“don’t care” pile. He then notes that the ordinary analysis for “He said something true.” is that there is a proposition which he has asserted and which is true.

Ordinary or not, there are enormous difficulties with such a proposal, not the least of which is the use of propositional quantification, which in this particular sentence \((\exists p)[\text{He said } p \text{ and it is true that } p]\) involves two occurrences of a term \(p\) in one of them it is to be replaced by the name of a proposition, and in the other it is to be replaced by a proposition. It can’t be a coherent view unless perhaps propositions are names of propositions. Fortunately Ramsey dismisses the ordinary analysis. If the world is simple, then there aren’t any propositions, and such an analysis unacceptable. He says “We are supposing there to be no complex things such as propositions and so cannot accept this analysis ...” (p.8)

Ramsey provides a different analysis for this difficult case. Suppose that “He said something true.” is a proposition of some definite type –say aRb. Then the analysis would be this: “There are terms and a relation, such that he has asserted the relation to hold between the terms and such that the relation does in fact hold between the terms.” (p.9) In this special case, the analysis would be something like \((\exists \alpha)(\exists \beta)(\exists \Re)\) [He asserted \((\alpha \Re \beta)\), and \(\alpha \Re \beta\)].

Notice that this would help to avoid the problem that the particular proposition that he said, was referred to, but was not presented. The particular proposition is nowhere mentioned in this account. If we had an account of the logical forms of propositions then for each type of proposition the possible range of different forms would be known, and the appropriate analysis could be given for each case (as above).²⁴

Why then does Ramsey think that if the world is simple then “truth” is an incomplete symbol, and that it is not a property? It is not a property he says, because “…in this analysis, no such property is mentioned.” (p.9)

²⁴ It would still not be clear sailing even if we could indicate what analysis to give for each of a range of possible logical forms. Ramsey couches his example using “assertion”, or “what he said”, and it seems just false to say that he said “\(\alpha \Re \beta\)”. Moreover in Ramsey’s analysis he uses the clause “the relation holds between the terms”, but this notion of “holding” is, in our opinion, just a thinly disguised variant of the notion of the concept of satisfaction or “true of”, so that the analysis would use a notion of truth for an unpresented proposition. But that was the problem which was supposed to be solved by the analysis. Therefore I have replaced the “holds of” phrasing by simply writing “and \(\alpha \Re \beta\)” instead. It is what I think Ramsey meant, and certainly what he came to mean in later writings.
True enough! Why is it an incomplete symbol? Evidently it is the standard understanding of the Russellian notion of an incomplete symbol that is intended: it is a symbol that has no meaning in isolation, and is defined only in certain contexts. The familiar examples used in Principia are classes, definite descriptions, and various differential and integral operators. To this list, Ramsey now adds “true”.

The contexts for each of the various incomplete symbols are so different it would be very difficult to indicate a uniform description of them. Nevertheless we can indicate how things go for “truth” in a context that Ramsey thought to be very significant. The occurrence of “truth” in “He believes that p is true” can be eliminated in an analysis of it as “He believes that p, and p” in which “true” is absent. I believe that Ramsey thought that the important contexts in which “truth” could be eliminated were precisely those like this case of belief ascription in which the clause “and p” could be appended. For that reason I will call this analysis of “truth” as an incomplete symbol the Conjunctive Theory of Truth. It (“and p”) makes it evident that we have something that has to be completed, and has no meaning in isolation.

On the second scenario, where the world is not simple, Ramsey argued if there were such complex entities as propositions, then in contrast with the first scenario, “truth” is a simple property. The specific property that he had in mind required the use of the special indefinable equivalence relation that he appealed to in his discussion of the relation between the three propositions “A is before B”, “A has the property of being before B” (a complex property), and “B has the property of being after A” (yet another complex property). In the case of these three propositions, Ramsey denied that they had the same meaning or that they logically implied each other. The differences from each other could be made by reference to differences in their constituents. Though different, they were equivalent with respect to that special indefinable equivalence relation “≈”.

Ramsey thought that it was this equivalence relation that also held between the proposition P and the proposition that It is true that P. Ramsey doesn’t provide an argument to support this claim, but we might come to it by a simple consideration that reflects the original example of “A is before B” and its cousins.

25 Whitehead and Russell, Principia Mathematica, Cambridge University Press, 1910, Chapter III.
26 Principia Mathematica, Chapter III, and Part I sections 14 and 20.
Suppose that we shift the example, and consider some proposition P that does not mention “true”, and the proposition that “P is true” ($\text{Tr} ("P")$]. Granting for the moment that “true” or ‘is true” refers to a property, one might say that these were different propositions since one had the constituent property “true”, and the other didn’t. Then they would presumably be related still by that special equivalence relation. That is, a condition that we shall call the Weak Tarski Schema:

$$(\text{WT}) \quad P \approx \text{Tr}("P")$$

where this schema is now supposed to cover all cases when a sentence replaces the occurrence of the schematic letter on the left, and a standard way of naming that sentence replaces the letter with its flanking quotation signs on the right. \(^{27}\) Ramsey then proposed a definition of truth, given that the world is complex:

“If I believed that there were such complex entities as proposition (sic) I should define truth as that property φ such that to say that p has φ is equivalent in the sense explained above to asserting p.” (p.9) \(^{28}\)

Thus truth is defined to be the property φ, such $P \approx \text{Tr}("P")$. This schema uses the indefinable equivalence relation “\approx” rather than a weak notion of material equivalence, or a stronger notion like logical equivalence or sameness of meaning.

Together with the claim that truth is a simple property, this schema yields a type of theory which, though different from anything presently in the literature, nevertheless shares some broad features with some better

\(^{27}\) In explaining the schema I have used “sentence” rather than “proposition” which Ramsey actually used. I think it is a more defensible version. Nevertheless the difference shouldn’t divert attention from the important innovation of Ramsey’s use of an indefinable equivalence relation. What gets related by it is not the issue here.

\(^{28}\) We have suppressed the use of “assertion” in our formulation of the of the equivalence condition in the Weak Tarski Schema, although of course Ramsey does speak of asserting p. The difference involves what the equivalence relates, and that is not at issue here. The equivalence relation referred to here is that relation discussed in the various propositions that are equivalent to the proposition that A is before B. It is the only equivalence relation referred to as such in the typescript, and Ramsey does say that he will mean the word “equivalent” to stand for that relation.(p.4)
known accounts such as that of Tarski, Field and Horwich. Tarski’s account uses an equivalence relation but it is that of mutual deducibility within a theory of truth T, in the metalanguage, and what are related are sentences of the object language. In Field’s account the relation is cognitive equivalence, which also seems to be an equivalence relation, relating sentence-readings. For Horwich, it is again an equivalence relation but of yet another sort.

It is also interesting to note that Ramsey’s account of truth in a complex world has features that make it minimal, though this feature is not one that he made explicit. There is no way of getting some “deeper” explanation of the instances of the Weak Tarskian schema by means of an analysis of the terms of the schema. His position entails that there’s no explaining the property of being true, since he held that it was a simple property. There is no indication in this typescript what the argument for simplicity might be, but there’s no doubt that this is the kind of theory that he proposes. Second there’s not supposed to be an explanation of the particular equivalence relation “≈” in the schema, since he claims that this equivalence relation is indefinable. Thus the schema is supposed to be guaranteed against further explanation via those two routes. There’s no explanatory underpinning of it. Both of these claims resonate with some current accounts.

What remains is the question of why we should think that there is, in this second scenario, any reason to believe that there is such a property as truth. The reason for the existence of such a property is, Ramsey says, exactly the same as for the existence of a complex property. He has Primitive Proposition 9.15 of Whitehead Russell’s Principia Mathematica in mind. Here is the closing paragraph of Apostles 1922 which makes the case directly:

I should suppose ϕ to be a simple quality; if asked why I should suppose there to be such a property I should say there were the same reasons as for any complex property. It is Principia 9.15. Primitive Proposition. If for some a

30 He’s talking to the Apostles, Moore might even have been present, and the idea of adding the true to the good and the beautiful as simple, would have obvious interest.
there is a proposition φa then there is a function φx and vice versa. In this case φx is \bar{x}"(p.9)

This explanation sheds some light on what Ramsey meant by truth’s being a property, and why he thought he had an argument for it’s existence. The compactness of the argument merits a little unpacking. Ramsey, following Russell used the notion of a propositional function φ, defined as a function that has propositions as values. Thus for some value a (or x), of the argument of that function, it’s value would be a proposition φa (or φx). In *Principia* Russell used $\varphi \tilde{x}$ to indicate the propositional function with values φx.

Why then does Ramsey remark that in this particular case (where he has defined truth as “that property φ such that to say that p has φ is equivalent in the sense explained above to asserting p”), the propositional function or property of truth is \tilde{x}? That would be just the identity propositional function; the one that for every proposition P, has itself as value. However, the truth propositional function assigning [P has truth (φ)] to P is not the identity function. The difference is made clear by Ramsey’s observation that [P has φ] and [(asserting) P] are not identical but equivalent. And as Ramsey emphasized, that is not the same thing. There are accounts in the literature that take truth to be the identity function31. I do not believe that it was Ramsey’s view.

His view of truth, if the world is not simple, has to take into account that the proposition P and the proposition that it is true that P are different, but that they are equivalent. In light of this, the definition that Ramsey gave for truth is not quite right, but it can be made so with a minor adjustment. It isn’t true that one can define truth as the property φ such that P has φ is equivalent to P, because φ is not unique. There may not be “the” property that satisfies the schema. If for example for some P there is a different, but equivalent proposition P^*, then let φ^* be the propositional function which assigns P^* to P, and agrees with φ everywhere else. The propositional functions φ and φ^* will be different, but both satisfy the schema. The adjustment however is a simple one.

Let us say that two propositional functions are equivalent if and only if for every argument, their values are equivalent. That is (using the same notation for the present, both for the values of the functions as well as for the functions themselves),

\[f \approx f^* \text{ if and only if } f(P) \approx f^*(P). \]

The propositional function \(\text{Tr} \), which assigns the proposition [It is true that \(P \)] to \(P \) is certainly different from the identity function, but it is equivalent to the identity propositional function. Thus we can say that Ramsey proposal is that there is a propositional function which, although not identical to the identity function, is equivalent to it. And that’s the truth.