In Part I:

1. Let \(f(x) = x^3 - 5x^2 + 10x + 20 \) in \(\mathbb{Z}[x] \) and let \((f) = f\mathbb{Z}[x] \) be the principal ideal generated by \(f \). Let \(\mathbb{Z}[\sqrt{3}] \) be the quadratic integer ring \(\{a + b\sqrt{3} | a, b \in \mathbb{Z}\} \). Let \(R \) be the ring \(\mathbb{Z}[\sqrt{3}] \otimes_{\mathbb{Z}} (\mathbb{Z}[x]/f\mathbb{Z}[x]) \). Prove or disprove that \(R \) is an integral domain.

2. Let \(p \) and \(q \) be distinct primes, \(R = \mathbb{Z}/pq\mathbb{Z}, x \) an indeterminate over \(R \) and \(S \) the ring \(R[x]/x^3R[x] \). Determine:
 a. all the maximal ideals of \(S \);
 b. all the prime ideals of \(S \);
 c. the nilradical of \(S \).

3. Let \(G \) be the group \(\mathbb{Z}/35\mathbb{Z} \) and \(H \) the group \(\mathbb{Z}/15\mathbb{Z} \).
 a. Determine all isomorphism classes of semidirect product groups \(G \rtimes_{\varphi} H \), where \(\varphi \) is a homomorphism from \(H \) to \(\text{Aut} \, G \).
 b. With \(G \) and \(H \) as above, give an example of a group \(K \) such that the following sequence is exact, but does not split: \(0 \to G \to K \to H \to 0 \).

4. Prove that a group of order 132 is not simple.

5. For each of the following, either construct the object or prove it does not exist:
 a. an integral domain consisting of 15 elements;
 b. an integral domain with non-zero characteristic and infinitely many elements.

6. Let \(R \) be the quadratic integer ring \(R := \{a + b\sqrt{-2} | a, b \in \mathbb{Z}\} \). Prove that \(R \) is an Euclidean domain with respect to the norm \(N(a + b\sqrt{-2}) = (a + b\sqrt{-2})(a - b\sqrt{-2}) \).

(see next page for Part II)
Part II

7. Let V be a finite dimensional vector space over \mathbb{Q} and let $T: V \to V$ be a linear transformation such that $T^2 = -1$. Suppose V has a non-trivial proper subspace W invariant under T. What is the smallest possible value for $\dim_{\mathbb{Q}} V$?

8. Let K be a finite extension field of F. Prove that K is a splitting field over F if and only if every irreducible polynomial in $F[x]$ that has a root in K splits completely in K.

9. Let \mathbb{F}_p denote the field with p elements. Determine the Galois group of the splitting field of $x^3 - x + 1$ over the following fields:
a) \mathbb{F}_3
b) \mathbb{F}_5
c) \mathbb{Q}.
(Recall that the discriminant $D(f)$ of $f(x) = x^3 + bx + c$ is given by $D(f) = -4b^3 - 27c^2$.)

10. Let K be a finite extension of \mathbb{Q} obtained by adjoining to \mathbb{Q} a root of $f(x) = x^6 + 3$.
 a. Show that K contains a primitive sixth root of unity.
 b. Show that K is Galois over \mathbb{Q}.
 c. Determine the number of fields F of degree 3 over \mathbb{Q} and contained in K.

11. Let K/F be a finite extension of finite fields. Prove that the norm map $N_{K/F}: K \to F$ is surjective.

12. Let k be an algebraically closed field and $A^n = k^n$ denote the affine space of dimension n. Consider the zero set
$$Y = \{x^2 - yz, xz - x\} \subset A^3.$$
Decompose Y into irreducible components.