Differential Geometry Qualifying Exam
Spring 2011

Instructions: No more than five problems will be graded—specify which ones you want graded.

Problem 1. Let (M, g) and (M', g') be n-dimensional Riemannian manifolds.

(a) Define what it means for (M, g) and (M', g') to be isometric.

(b) Define what it means for (M, g) and (M', g') to be conformally equivalent.

(c) Let

$$M = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 = 1, z > 0\}$$

and

$$M' = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 = z^2, z > 0\},$$

each with metric induced by the standard Euclidean metric in \mathbb{R}^3. Prove or disprove: M and M' are isometric.

Problem 2. Give a precise definition of a smooth vector bundle.

(a) Define what it means for a smooth vector bundle to be trivial.

(b) Give an example of a smooth vector bundle that is not trivial and prove that it is not trivial.

Problem 3. Prove that the set $\{(x, y) \in \mathbb{R}^2 | x^2 = y^3\}$ is not a smooth submanifold of \mathbb{R}^2.

Problem 4. Let M be a smooth hypersurface in \mathbb{R}^n. Prove that M is orientable if and only if there exists a transverse smooth vector field along M. (For this problem, you may use any intrinsic definition of orientability.)

Problem 5. Consider vector fields on $\{(x, y, z) \in \mathbb{R}^3 : x, y, z > 0\}$ given by

$$X = xy \frac{\partial}{\partial x} - yz \frac{\partial}{\partial z} \quad \text{and} \quad Y = x \frac{\partial}{\partial x} - \frac{1}{2} y \frac{\partial}{\partial y}.$$

(a) Let ϕ_t and ψ_s be the flows generated by X and Y respectively and compute $\phi_t(x_0, y_0, z_0)$ and $\psi_s(x_0, y_0, z_0)$.

(b) Do X and Y span an involutive distribution? Explain.

Problem 6. Show that the smooth manifold $S^1 \times S^2$ does not admit a metric whose sectional curvatures are all positive.
Problem 7. Let Σ be a smooth surface of genus equal to 2.

(a) Draw the image of an embedding $\phi: \Sigma \to \mathbb{R}^3$. Label at least one point of positive and negative curvature, respectively.

(b) Prove that for any embedding ϕ there is an open subset of $\phi(\Sigma)$ where curvature is negative.

Problem 8. Consider the surface

$$M = \{(x, y, z) \in \mathbb{R}^3 | x = y^2 + z^2 \leq 4\}$$

oriented in such a way that the basis $\left\{ \frac{\partial}{\partial z}, \frac{\partial}{\partial y} - \frac{\partial}{\partial z} \right\}$ of $T_{(0,0,0)} M$ is positively oriented. Compute:

(a) $\int_M xy^2 \, dx \wedge dz + \sin(yz^2) \, dy \wedge dz$

(b) $\int_{\partial M} xz \, dy + y^2 \, dz$.

Problem 9. Let G be a connected Lie group with bi-invariant metric g. Let ∇ denote the Levi-Civita connection. Then for left invariant vector fields X, Y and Z,

$$g ([X, Y], Z) = g (X, [Y, Z]) \quad \text{and} \quad \nabla_X Y = \frac{1}{2} [X, Y].$$

(a) Show that the curvature tensor of ∇ satisfies

$$Rm(X, Y, Z, W) = -\frac{1}{4} g ([X, Y], [Z, W])$$

whenever X, Y, Z and W are left invariant vector fields.

(b) Show that the sectional curvature of (G, g) is non-negative.

(c) Prove that the Lie algebra \mathfrak{g} of G has zero bracket if and only if the sectional curvature of (G, g) is zero.