Do any 6 problems. Note: Throughout this exam, all manifolds are C^∞ and connected, and all maps are C^∞ unless it is specifically stated otherwise.

1. Let G be the set of 2×2 invertible matrices with real entries and 0 in the lower left corner. Show that G is a smooth manifold, is not connected and can be parametrized by a single chart. Show that G is homotopy-equivalent to a space consisting of four points and that every closed differential form on G of positive degree is exact.

2. Let $N \subset M$ be a closed, embedded submanifold of a smooth manifold M. Show that every Riemannian metric g on N is the restriction to N of a Riemannian metric h on M.

3. Let P be a geodesic polygon in the hyperbolic plane of constant curvature -1 with n sides and interior angles $\alpha_1, \alpha_2, \ldots, \alpha_n$. Prove that the area of P is equal to $(n-2)\pi - \sum_{i=1}^{n} \alpha_i$.

4. Let S be a surface of revolution in \mathbb{R}^3 equipped with the induced metric. Show that the curves of intersection of S with planes passing through the axis of revolution are geodesics on S. Hint: No calculations are necessary to do this problem.

5. Let M be a Riemannian manifold and $\gamma : [0, a] \rightarrow M$ a smooth curve parametrized by arc length. Let V be a smooth vector field along γ vanishing at the endpoints, $V(0) = 0$, $V(a) = 0$.
 a) Prove that for some $\epsilon > 0$ there exists a parametrized surface $\alpha : [0, a] \times (-\epsilon, \epsilon) \rightarrow M$ which is a proper variation of γ, i.e. $\alpha(t, 0) = \gamma(t)$ for all $t \in [0, a]$ and $\alpha(0, s) = \gamma(0)$ and $\alpha(a, s) = \gamma(a)$ for all $s \in (-\epsilon, \epsilon)$ such that $\partial \alpha / \partial s(t, 0) = V(t)$ for all $t \in [0, a]$.
 b) If $\gamma_s(\cdot) = \alpha(\cdot, s)$ prove the first variation of arc length formula
 $$ \frac{d}{ds}|_{s=0} L(\gamma_s) = - \int_0^a \left< V, \frac{D}{dt} \gamma' \right> dt. $$
 c) Conclude that if γ minimizes the length between $p = \gamma(0)$ and $q = \gamma(a)$ among all smooth curves from p to q, then γ is a geodesic.

6. Show that if a Riemannian manifold M has the property that for every two points $p, q \in M$ and orthonormal pairs of tangent vectors $v, w \in T_p M$ and $\tilde{v}, \tilde{w} \in T_q M$ there exists a local isometry taking p to q, v to \tilde{v}, and w to \tilde{w}, then M has a constant sectional curvature.
7. Let \(S \) be a surface equipped with a complete Riemannian metric and \(\gamma : (-1, 1) \to S \) a smooth curve. Suppose \(X_t \) is a parallel vector field along \(\gamma \) such that \(|X_t| \equiv 1\) and \(\langle X_t, \dot{\gamma}(t) \rangle \equiv 0 \). Consider the mapping \(E : (-1, 1) \times (-\infty, \infty) \to S \) given by

\[
E(s, t) = \exp_{\gamma(s)}(tX_s).
\]

Show that the curves \(s \to E(s, t_0) \) are perpendicular to geodesics \(t \to E(s_0, t) \) for all \((s_0, t_0) \).

8. Consider the differential form \(\omega = xydz - ydxz + zdx \wedge dy \) in \(\mathbb{R}^3 \). Prove that \(\omega \) is invariant under rotations, i.e. if \(A \) is an orthogonal transformation of \(\mathbb{R}^3 \) then \(A^* \omega = \omega \), and that

\[
\int_{S^2} \omega > 0.
\]

9. Consider the mapping \(\tilde{F} : S^2 \to \mathbb{R}^3 \) given by the formula

\[
\tilde{F}(x, y, z) = (yz, xz, xy).
\]

a) Show that \(\tilde{F} \) induces a map \(F \) from the real projective plane \(\mathbb{R}P^2 \) to \(\mathbb{R}^3 \).

b) Show that \(F \) is an immersion but is not injective.

c) Let \(\pi : (u, v, w) \to (u, v) \). At which points of the projective plane does \(\pi \circ F \) fail to be an immersion.

10. Let \(\omega \) be a 1–form on \(S^2 \) invariant under all orthogonal transformations of \(\mathbb{R}^3 \). Show that \(\omega \) must vanish identically.