Logic Qualifying Exam Three Parts August 2020

Part Zero

Provide an attribution/name and a sketch of a proof for any **THREE** of the following results:

- 1. If a substructure \mathcal{A} of a structure \mathcal{B} is closed under Skolem functions, then $\mathcal{A} \prec \mathcal{B}$.
- 2. Every finite order-preserving partial function from one countable dense linear order without endpoints to another can be extended to an isomorphism.
- 3. If every finite subset of a collection of sentences in a fixed first order language has a model, then the whole collection has a model.
- 4. Let $(A_i \mid i < \lambda)$ be a sequence of structures of some fixed first order language \mathcal{L} such that for $i < j < \lambda$, $A_i \prec A_j$. Let A_{λ} be the \mathcal{L} -structure whose universe is the union of the universes of the structures A_i , for $i < \lambda$, and whose interpretation of the symbols in the language is given by $\dot{c}^{A_{\lambda}} = \dot{c}^{A_i}$ for any/all $i < \lambda$ if \dot{c} is a constant symbol, $\dot{R}^{A_{\lambda}} = \bigcup_{i < \lambda} \dot{R}^{A_i}$ if \dot{R} is a relation symbol, and $\dot{f}^{A_{\lambda}}(a_0, \ldots, a_{n-1}) = b$ if $\dot{f}^{A_i}(a_0, \ldots, a_{n-1}) = b$ for any/all $i < \lambda$ such that a_0, \ldots, a_{n-1} belong to the universe of A_i , when \dot{f} is an n-ary function symbol. Then for every $i < \lambda$, $A_i \prec A_{\lambda}$.
- 5. Every infinite tree in which every node has at most finitely many immediate successors has an infinite branch.
- 6. If a and b are sets and there are an injection from a into b and an injection from b into a, then there is a bijection between a and b.

Part One

Do **THREE** of the following six problems. All syntax below is assumed to be first order, with equality as a logical symbol (i.e. always part of any of the languages considered).

- 1. Assume that a sentence φ and a theory T have exactly the same models. Prove that there is a finite subset $S \subseteq T$ such that φ and S have exactly the same models.
- 2. Prove that the ordering of the rationals is an elementary substructure of the ordering of the reals. [You may skip the calculational details if you explain the principle well enough.]
- 3. Suppose L is a language whose single non-logical symbol is a binary relation symbol E. Consider the L-theory T of all L-structures in which E defines an equivalence relation with infinitely many E-classes, such that every E-class is infinite.
 - (a) Write down an L-axiomatization of T.
 - (b) Describe the countable models of T.
 - (c) How many are there (up to isomorphism)?
 - (d) Conclude what you can from this about the completeness of T.
- 4. Let T be the theory of vector spaces over \mathbb{Q} —in a language that contains a constant 0, a binary function symbol +, both with the natural interpretation, and for each $q \in \mathbb{Q}$ a unary function symbol f_q representing scalar multiplication by q.
 - (a) Show that T is a complete theory
 - (b) with quantifier elimination.
 - (c) Is T ω -categorical? [Justify your answer.]
- 5. Let L be the language with a single non-logical symbol, a binary relation E. Let T be the theory stating that E is an equivalence relation with exactly three classes all of which are infinite. Show that T has quantifier elimination.
- 6. Let M_i , $i \in \omega$, be finite L-structures. Let U be an ultrafilter on ω . Show that in the ultraproduct $M = (\prod_{i \in \omega} M_i)/U$ there is no formula $\varphi(x, y)$ which defines an infinite linear order with no largest element.

Part Two

Do THREE of the following six problems.

- 1. Prove that every complete theory with a computably enumerable axiom set is decidable.
- 2. Prove true or prove false: there is a universal total computable function, that is, a total computable function $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$, such that every total computable function occurs as f_n for some n, where f_n is the function defined by $f_n(m) = f(n, m)$.
- 3. Suppose that φ is a partial computable function whose domain is not computable. Prove that there exists an $n \in \omega$ such that in \mathbb{N} , φ does not halt on input n, but such that there exists a model of $A_{\mathcal{E}}$ in which φ does halt on input n.
- 4. Let TA (for "true arithmetic") be the set of Gödel codes of sentences true in the standard model of arithmetic $\langle \mathbb{N}, +, \cdot, 0, 1, < \rangle$. Show that if $A \subseteq \mathbb{N}$ is definable in $\langle \mathbb{N}, +, \cdot, 0, 1, < \rangle$, then $A <_T TA$. (Notation: $X <_T Y$ means that X is Turing computable from an oracle for Y, but not conversely. Be sure to show the strictness, as well as the existence of a reduction.)
- 5. Show that, under the axiom system **ZF**, the following two versions of the Axiom of Choice are equivalent.
 - (AC): For each set R of ordered pairs, there is a function $H \subseteq R$ with dom(H) = dom(R). (WO): Every set has a well-ordering.
- 6. Let (A, <) and (B, \prec) be well-orders of two sets A and B. Prove that if these two orders are isomorphic, then the isomorphism between them is unique.