Introduction

- Theoretical exploration of link between growth process and income distribution in the closed and open economies
Theoretical exploration of link between growth process and income distribution in the closed and open economies

Focus on one mechanism:
Introduction

- Theoretical exploration of link between growth process and income distribution in the closed and open economies

- Focus on one mechanism:
 - Sorting of heterogeneous workers into idea-generating and manufacturing activities
Introduction

- Theoretical exploration of link between growth process and income distribution in the closed and open economies
- Focus on one mechanism:
 - **Sorting** of heterogeneous workers into idea-generating and manufacturing activities
 - **Matching** of workers in manufacturing with heterogeneous firms/technologies
Introduction

- Theoretical exploration of link between growth process and income distribution in the closed and open economies
- Focus on one mechanism:
 - Sorting of heterogeneous workers into idea-generating and manufacturing activities
 - Matching of workers in manufacturing with heterogeneous firms/technologies
- Many other mechanisms are absent; e.g.,
Introduction

- Theoretical exploration of link between growth process and income distribution in the closed and open economies

- Focus on one mechanism:
 - **Sorting** of heterogeneous workers into idea-generating and manufacturing activities
 - **Matching** of workers in manufacturing with heterogeneous firms/technologies

- Many other mechanisms are absent; e.g.,
 - Differences in savings propensity between rich and poor (Kaldor)
Introduction

Theoretical exploration of link between growth process and income distribution in the closed and open economies

Focus on one mechanism:
- Sorting of heterogeneous workers into idea-generating and manufacturing activities
- Matching of workers in manufacturing with heterogeneous firms/technologies

Many other mechanisms are absent; e.g.,
- Differences in savings propensity between rich and poor (Kaldor)
- Poor households face credit constraints (Galor and Zeira)
Introduction

- Theoretical exploration of link between growth process and income distribution in the closed and open economies

- Focus on one mechanism:
 - Sorting of heterogeneous workers into idea-generating and manufacturing activities
 - Matching of workers in manufacturing with heterogeneous firms/technologies

- Many other mechanisms are absent; e.g.,
 - Differences in savings propensity between rich and poor (Kaldor)
 - Poor households face credit constraints (Galor and Zeira)
 - Greater inequality generates more redistribution via political process (Alesina and Rodrik; Persson and Tabellini)
Demand and Supply of Consumption Goods

- Mass N of heterogeneous individuals, indexed by a
Demand and Supply of Consumption Goods

- Mass N of heterogeneous individuals, indexed by a
- Cumulative distribution $H(a)$, with $H'(a) > 0$ on $[a_{min}, a_{max}]$
Demand and Supply of Consumption Goods

- Mass N of heterogeneous individuals, indexed by a
- Cumulative distribution $H(a)$, with $H'(a) > 0$ on $[a_{\text{min}}, a_{\text{max}}]$
- Logarithmic intertemporal utility: $u_t = \int_t^\infty e^{-\rho(\tau-t)} \log c_\tau \, d\tau$
Demand and Supply of Consumption Goods

- Mass N of heterogeneous individuals, indexed by a
- Cumulative distribution $H(a)$, with $H'(a) > 0$ on $[a_{min}, a_{max}]$
- Logarithmic intertemporal utility: $u_t = \int_t^\infty e^{-\rho(\tau-t)} \log c_\tau d\tau$
- Consumption good assembled from CES differentiated intermediate inputs

$$X = \left[\int_{\omega \in \Omega} X(\omega)^{\frac{\sigma-1}{\sigma}} d\omega \right]^{\frac{\sigma}{\sigma-1}}, \quad \sigma > 1$$
Demand and Supply of Consumption Goods

- Mass N of heterogeneous individuals, indexed by a
- Cumulative distribution $H(a)$, with $H'(a) > 0$ on $[a_{\text{min}}, a_{\text{max}}]$
- Logarithmic intertemporal utility: $u_t = \int_t^\infty e^{-\rho(\tau-t)} \log c_\tau d\tau$
- Consumption good assembled from CES differentiated intermediate inputs

$$X = \left[\int_{\omega \in \Omega} x(\omega) \right]^{\frac{\sigma-1}{\sigma}} \frac{\sigma}{\sigma-1}, \quad \sigma > 1$$

- Consumption good priced competitively

$$\left[\int_{\omega \in \Omega} p(\omega)^{1-\sigma} d\omega \right]^{\frac{1}{1-\sigma}} = q$$
• Mass N of heterogeneous individuals, indexed by a

• Cumulative distribution $H(a)$, with $H'(a) > 0$ on $[a_{\text{min}}, a_{\text{max}}]$

• Logarithmic intertemporal utility: $u_t = \int_t^\infty e^{-\rho(\tau-t)} \log c_\tau d\tau$

• Consumption good assembled from CES differentiated intermediate inputs

\[X = \left[\int_{\omega \in \Omega} X(\omega)^{\frac{\sigma-1}{\sigma}} d\omega \right]^{\frac{\sigma}{\sigma-1}}, \quad \sigma > 1 \]

• Consumption good priced competitively

\[\left[\int_{\omega \in \Omega} p(\omega)^{1-\sigma} d\omega \right]^{\frac{1}{1-\sigma}} = q \]

• Choice of numeraire: $q_t = 1$ for all t.
Production of Intermediates

- Production of intermediates

\[x_\omega = \int_{a \in L_\omega} \psi(\varphi_\omega, a) \ell_\omega(a) \, da \]
Production of Intermediates

- Production of intermediates

\[x_\omega = \int_{a \in L_\omega} \psi(\varphi_\omega, a) \ell_\omega(a) \, da \]

- Assume \(\psi(\varphi, a) \) is twice continuously differentiable and strictly log supermodular
Production of Intermediates

- Production of intermediates

\[x_\omega = \int_{a \in L_\omega} \psi(\varphi_\omega, a) \ell_\omega(a) \, da \]

- Assume \(\psi(\varphi, a) \) is twice continuously differentiable and strictly log supermodular
 - For given wage schedule, firm hires optimal labor type \(m(\varphi) \Rightarrow \text{PAM: } m'(\varphi) > 0 \)
Production of intermediates

$x_\omega = \int_{a \in L_\omega} \psi(\varphi_\omega, a) \ell_\omega(a) \, da$

Assume $\psi(\varphi, a)$ is twice continuously differentiable and strictly log supermodular:
- For given wage schedule, firm hires optimal labor type $m(\varphi) \Rightarrow \text{PAM: } m'(\varphi) > 0$

Demand for intermediate ω

$x(\omega) = X p(\omega)^{-\sigma}$
Optimal pricing in monopolistic competition (after change of variable):

\[p(\varphi) = \left(\frac{\sigma}{\sigma - 1} \right) \frac{w[m(\varphi)]}{\psi[\varphi, m(\varphi)]} \]
Pricing and Profits

- Optimal pricing in monopolistic competition (after change of variable):
 \[p(\phi) = \left(\frac{\sigma}{\sigma - 1} \right) \frac{w[m(\phi)]}{\psi[\phi, m(\phi)]} \]

- Profits:
 \[\pi(\phi) = \sigma^{-\sigma} (\sigma - 1)^{-(\sigma-1)} X \left\{ \frac{w[m(\phi)]}{\psi[\phi, m(\phi)]} \right\}^{1-\sigma} \]
Inventing New Varieties

- Invention of new varieties à la Romer
Inventing New Varieties

- Invention of new varieties à la Romer
 - Stock of knowledge: \(\theta K M \)
Inventing New Varieties

- Invention of new varieties à la Romer
 - Stock of knowledge: $\theta_K M$
 - Worker of type a has productivity $T(a)$ in research sector

Growth of varieties

Each invention generates a “Melitz draw” of ϕ from $G(\phi)$

Allow free entry into innovation:

$$\rho + g_M = w(a) T(a) \theta_K M$$ for all $a^2 L R$.

Inventing New Varieties

- **Invention of new varieties à la Romer**
 - Stock of knowledge: $\theta_K M$
 - Worker of type a has productivity $T(a)$ in research sector
 - $\ell_R(a)$ workers of type a invent $dM = \theta_K MT(a) \ell_R(a) dt$ new varieties per time interval dt (strong scale effects)
Inventing New Varieties

- Invention of new varieties à la Romer
 - Stock of knowledge: $\theta K M$
 - Worker of type a has productivity $T(a)$ in research sector
 - $\ell_R(a)$ workers of type a invent $dM = \theta K MT(a) \ell_R(a) dt$ new varieties per time interval dt (strong scale effects)

- Growth of varieties

$$g_M = \theta K N \int_{a \in L_R} T(a) dH(a)$$
Inventing New Varieties

- Invention of new varieties à la Romer
 - Stock of knowledge: $\theta K M$
 - Worker of type a has productivity $T(a)$ in research sector
 - $\ell_R(a)$ workers of type a invent $dM = \theta K M T(a) \ell_R(a) dt$ new varieties per time interval dt (strong scale effects)

- Growth of varieties

 $$g_M = \theta K N \int_{a \in L_R} T(a) dH(a)$$

- Each invention generates a “Melitz draw” of φ from $G(\varphi)$
Inventing New Varieties

- **Invention of new varieties à la Romer**
 - Stock of knowledge: $\theta_K M$
 - Worker of type a has productivity $T(a)$ in research sector
 - $\ell_R(a)$ workers of type a invent $dM = \theta_K M T(a) \ell_R(a) dt$ new varieties per time interval dt (strong scale effects)

- **Growth of varieties**
 \[
g_M = \theta_K N \int_{a \in L_R} T(a) dH(a)
 \]

- Each invention generates a “Melitz draw” of ϕ from $G(\phi)$

- **Allow free entry into innovation:**
 \[
 \frac{\int_{\phi_{\text{min}}}^{\phi_{\text{max}}} \pi(\phi) dG(\phi)}{\rho + g_M} = \frac{w(a)}{T(a) \theta_K M} \quad \text{for all } a \in L_R.
 \]
Assumption $T(a)/\psi(\varphi, a)$ is increasing in a for all (φ, a)
Assumption \(T(a) / \psi(\varphi, a) \) is increasing in \(a \) for all \((\varphi, a) \)

Lemma 1 For any closed interval \([a', a''] \in L_M\),

\[
\frac{w'(a)}{w(a)} = \frac{\psi_a [m^{-1}(a), a]}{\psi [m^{-1}(a), a]} \quad \text{for all } a \in (a', a'')
\]
Assumption \(T(a) / \psi(\phi, a) \) is increasing in \(a \) for all \((\phi, a) \)

Lemma 1 For any closed interval \([a', a''] \) \(\in \) \(L_M \),

\[
\frac{w'(a)}{w(a)} = \frac{\psi_a [m^{-1}(a), a]}{\psi [m^{-1}(a), a]} \quad \text{for all } a \in (a', a'')
\]

Lemma 2 For any closed interval \([a', a''] \) \(\in \) \(L_R \),

\[
\frac{w'(a)}{w(a)} = \frac{T'(a)}{T(a)} \quad \text{for all } a \in (a', a'')
\]
Assumption \(T(a) / \psi(\varphi, a) \) is increasing in \(a \) for all \((\varphi, a) \)

Lemma 1 For any closed interval \([a', a''] \in L_M \),

\[
\frac{w'(a)}{w(a)} = \frac{\psi_a \left[m^{-1}(a), a \right]}{\psi \left[m^{-1}(a), a \right]} \quad \text{for all} \quad a \in (a', a'')
\]

Lemma 2 For any closed interval \([a', a''] \in L_R \),

\[
\frac{w'(a)}{w(a)} = \frac{T'(a)}{T(a)} \quad \text{for all} \quad a \in (a', a'')
\]

Sorting: Assumption implies \(\exists \ a_R \) ("cutoff") such that \(a < a_R \Rightarrow a \in L_M \) and \(a > a_R \Rightarrow a \in L_R \) (like "occupational choice" in Lucas 78)
Labor-Market Equilibrium

- **Labor market clearing**: Supply of workers of type $m(\varphi)$ equals demand for workers by firms of type φ

\[
m'(\varphi) H'[m(\varphi)] = \frac{MX}{N} \left(\frac{\sigma}{\sigma - 1} \right)^{-\sigma} \frac{w[m(\varphi)]^{-\sigma}}{\psi[\varphi, m(\varphi)]^{1-\sigma}} G'(\varphi)
\]
Labor-Market Equilibrium

- **Labor market clearing**: Supply of workers of type $m(\varphi)$ equals demand for workers by firms of type φ

$$m'(\varphi) H' [m(\varphi)] = \frac{MX}{N} \left(\frac{\sigma}{\sigma - 1} \right)^{-\sigma} \frac{w[m(\varphi)]^{-\sigma}}{\psi[\varphi, m(\varphi)]^{1-\sigma}} G'(\varphi)$$

- Differentiate and substitute wage equation:

$$\frac{m''(\varphi)}{m'(\varphi)} = (\sigma - 1) \frac{\psi_\varphi [\varphi, m(\varphi)]}{\psi [\varphi, m(\varphi)]} - \frac{\psi_a [\varphi, m(\varphi)] m'(\varphi)}{\psi [\varphi, m(\varphi)]} + \frac{G''(\varphi)}{G'(\varphi)} - \frac{H''[m(\varphi)] m'(\varphi)}{H'[m(\varphi)]}$$
Labor-Market Equilibrium

- Labor market clearing: Supply of workers of type $m(\phi)$ equals demand for workers by firms of type ϕ

$$m'(\phi) H'[m(\phi)] = \frac{MX}{N} \left(\frac{\sigma}{\sigma - 1} \right)^{-\sigma} \frac{w[m(\phi)]^{-\sigma}}{\psi[\phi, m(\phi)]^{1-\sigma}} G'(\phi)$$

- Differentiate and substitute wage equation:

$$\frac{m''(\phi)}{m'(\phi)} = (\sigma - 1) \frac{\psi_\phi[\phi, m(\phi)]}{\psi[\phi, m(\phi)]} - \frac{\psi_a[\phi, m(\phi)] m'(\phi)}{\psi[\phi, m(\phi)]}$$

$$+ \frac{G''(\phi)}{G'(\phi)} - \frac{H''[m(\phi)] m'(\phi)}{H'[m(\phi)]}$$

- Boundary conditions

$$m(\phi_{\text{min}}) = a_{\text{min}}, \quad m(\phi_{\text{max}}) = a_R$$
Equilibrium Matching Function

- Differential equations for w and m have unique solution for given a_R
Equilibrium Matching Function

- Differential equations for \(w \) and \(m \) have unique solution for given \(a_R \).
- If boundary points change and no term in the second-order differential equation changes, new and old matching functions can intersect at most once.
Equilibrium Matching Function

- Differential equations for w and m have unique solution for given a_R
- If boundary points change and no term in the second-order diff eq changes, new and old matching functions can intersect at most once
Equilibrium Matching Function

- Differential equations for w and m have unique solution for given a_R
- If boundary points change and no term in the second-order diff eq changes, new and old matching functions can intersect at most once

So, $a_R \uparrow \Rightarrow$ (inverse)-matching function shifts down
Equilibrium Matching Function

- Differential equations for w and m have unique solution for given a_R
- If boundary points change and no term in the second-order diff eq changes, new and old matching functions can intersect at most once

So, $a_R \uparrow \Rightarrow$ (inverse)-matching function shifts down
- every worker matches with lower productivity firm
Equilibrium Matching Function

- Differential equations for w and m have unique solution for given a_R
- If boundary points change and no term in the second-order diff eq changes, new and old matching functions can intersect at most once

So, $a_R \uparrow \Rightarrow$ (inverse)-matching function shifts down
- every worker matches with lower productivity firm
- due to log supermodularity of $\psi(\cdot)$, log wage profile on $[a_{\min}, a_R]$ must flatten (steepen) when a_R increases (decreases)
Balanced-Growth Path

- **Sorting** of workers implies:

\[
g_M = \theta_K N \int_{a_R}^{a_{\text{max}}} T(a) \, dH(a) \quad \text{(RR)}
\]
Balanced-Growth Path

- **Sorting** of workers implies:

\[
g_M = \theta_K N \int_{a_R}^{a_{\text{max}}} T(a) \, dH(a)
\]

(RR)

- Combining labor-market clearing and free-entry condition:

\[
\rho + g_M = \theta_K N \Lambda(a_R)
\]

(AA)
Balanced-Growth Path

- **Sorting** of workers implies:

\[g_M = \theta_K N \int_{a_R}^{a_{\max}} T(a) \, dH(a) \] \hspace{1cm} (RR)

- Combining labor-market clearing and free-entry condition:

\[\rho + g_M = \theta_K N \Lambda(a_R) \] \hspace{1cm} (AA)

- These two conditions yield a solution for \((a_R, g_M)\):

![Diagram showing the relationship between \(a_R\) and \(g_M\) with points labeled \(R\), \(E\), and \(A\).]
Two Types of Results

Autarky
- How do cross-country differences generate differences in autarky (steady-state) growth rates and wage inequality?

Integration
- How does trade integration affect countries’ growth rates and inequality?
- How do growth and inequality compare across countries in a trade equilibrium?
Hicks-neutral technology differences: $\psi_c (\varphi, a) = \theta \psi_c \psi (\varphi, a)$
Hicks-neutral technology differences: $\psi_c(\varphi, a) = \theta \psi_c \psi(\varphi, a)$

Matching function $m(\varphi; a_R)$ is common to both countries.
Hicks-neutral technology differences: \(\psi_c(\varphi, a) = \theta \psi_c \psi(\varphi, a) \)

- Matching function \(m(\varphi; a_R) \) is common to both countries
- Relative wages same in both countries if same cutoff \(a_R \)
Hicks-neutral technology differences: $\psi_c(\varphi, a) = \theta \psi_c \psi(\varphi, a)$

- Matching function $m(\varphi; a_R)$ is common to both countries
- Relative wages same in both countries if same cutoff a_R
- Same AA and RR curves \Rightarrow same cutoff a_R
Cross-country Comparisons in Autarky
Manufacturing Productivity

- Hicks-neutral technology differences: \(\psi_c(\varphi, a) = \theta_{\psi c} \psi(\varphi, a) \)
 - Matching function \(m(\varphi; a_R) \) is common to both countries
 - Relative wages same in both countries if same cutoff \(a_R \)
 - Same AA and RR curves \(\Rightarrow \) same cutoff \(a_R \)
 - Same long-run growth and inequality
Cross-country Comparisons in Autarky
Manufacturing Productivity

- Hicks-neutral technology differences: $\psi_c(\phi, a) = \theta \psi_c \psi(\phi, a)$
 - Matching function $m(\phi; a_R)$ is common to both countries
 - Relative wages same in both countries if same cutoff a_R
 - Same AA and RR curves \Rightarrow same cutoff a_R
 - Same long-run growth and inequality

- **Hicks-neutral technology differences generate income level differences**, but do not affect growth and inequality
Capacity to innovate described by three parameters:

- Size of labor force: N_c
- Efficiency of knowledge accumulation: θ_k
- Productivity of inventors: θ_T

In RR and AA curves, these parameters enter as product:

$$N_c \theta_k \theta_T$$

If $N_i \theta_k \theta_T > N_j \theta_k \theta_T$, then $a_R < a_R$ and $g_M > g_M$.
Cross-country Comparisons in Autarky
Capacity to Innovate

- Capacity to innovate described by three parameters
 - Size of labor force: N_c
 - Efficiency of knowledge accumulation: θ_K
 - Productivity of inventors: θ_T, where $T(a) = \theta_T T(a)$

In RR and AA curves, these parameters enter as product:

$$N_c \theta_K \theta_T$$

If $N_i \theta_K \theta_T > N_j \theta_K \theta_T$, then $a_R(i) < a_R(j)$ and $g_M(i) > g_M(j)$.

Income inequality:

- More unequal wages in manufacturing in i than in j due to better technology matches
- Larger size of research sector, which pays higher reward to ability
- More inequality overall
Cross-country Comparisons in Autarky
Capacity to Innovate

- **Capacity to innovate** described by three parameters

 - Size of labor force: \(N_c\)
 - Efficiency of knowledge accumulation: \(\theta_{KC}\)

In RR and AA curves, these parameters enter as product:

\[N_c \theta_{KC}\]

If \(N_i \theta_{Ki} \theta_{Ti} > N_j \theta_{Kj} \theta_{Tj}\) then \(a_Ri < a_Rj\) and \(g_Mi > g_Mj\)

Income inequality:

- More unequal wages in manufacturing in \(i\) than in \(j\) due to better technology matches
- Larger size of research sector, which pays higher reward to ability
- More inequality overall
Cross-country Comparisons in Autarky

Capacity to Innovate

- **Capacity to innovate** described by three parameters
 - Size of labor force: N_c
 - Efficiency of knowledge accumulation: θ_K
 - Productivity of inventors: θ_T, where $T_c(a) = \theta_T T(a)$

Income inequality:
More unequal wages in manufacturing in i than in j due to better technology matches
Larger size of research sector, which pays higher reward to ability
More inequality overall

Grossman and Helpman (2015) *Growth, Trade, and Inequality*
Cross-country Comparisons in Autarky
Capacity to Innovate

- **Capacity to innovate** described by three parameters
 - Size of labor force: N_c
 - Efficiency of knowledge accumulation: θ_{Kc}
 - Productivity of inventors: θ_{Tc}, where $T_c(a) = \theta_{Tc} T(a)$

- In RR and AA curves, these parameters enter as product: $N_c \theta_{Kc} \theta_{Tc}$
Cross-country Comparisons in Autarky
Capacity to Innovate

- **Capacity to innovate** described by three parameters
 - Size of labor force: N_c
 - Efficiency of knowledge accumulation: θ_K
 - Productivity of inventors: θ_T, where $T_c(a) = \theta_T T(a)$

- In RR and AA curves, these parameters enter as product: $N_c \theta_K \theta_T$
- If $N_i \theta_K^i \theta_T^i > N_j \theta_K^j \theta_T^j \Rightarrow a_{Ri} < a_{Rj}$ and $g_{Mi} > g_{Mj}$
Cross-country Comparisons in Autarky
Capacity to Innovate

- **Capacity to innovate** described by three parameters
 - Size of labor force: \(N_c \)
 - Efficiency of knowledge accumulation: \(\theta_K \)
 - Productivity of inventors: \(\theta_T \), where \(T_c(a) = \theta_T T(a) \)

- In \(RR \) and \(AA \) curves, these parameters enter as product: \(N_c \theta_K \theta_T \)
- If \(N_i \theta_K i \theta_T i > N_j \theta_K j \theta_T j \) \(\Rightarrow \) \(a_{Ri} < a_{Rj} \) and \(g_{Mi} > g_{Mj} \)

- Income inequality:
Cross-country Comparisons in Autarky
Capacity to Innovate

- **Capacity to innovate** described by three parameters
 - Size of labor force: N_c
 - Efficiency of knowledge accumulation: θ_{Kc}
 - Productivity of inventors: θ_{Tc}, where $T_c(a) = \theta_{Tc} T(a)$

In RR and AA curves, these parameters enter as product: $N_c \theta_{Kc} \theta_{Tc}$

- If $N_i \theta_{Ki} \theta_{Ti} > N_j \theta_{Kj} \theta_{Tj} \Rightarrow a_{Ri} < a_{Rj}$ and $g_{Mi} > g_{Mj}$

- **Income inequality:**
 - More unequal wages in manufacturing in i than in j due to better technology matches
Cross-country Comparisons in Autarky
Capacity to Innovate

- **Capacity to innovate** described by three parameters
 - Size of labor force: N_c
 - Efficiency of knowledge accumulation: θ_{Kc}
 - Productivity of inventors: θ_{Tc}, where $T_c(a) = \theta_{Tc} T(a)$

- In RR and AA curves, these parameters enter as product: $N_c\theta_{Kc}\theta_{Tc}$
- If $N_i\theta_{Ki}\theta_{Ti} > N_j\theta_{Kj}\theta_{Tj}$ \Rightarrow $a_{Ri} < a_{Rj}$ and $g_{Mi} > g_{Mj}$

- **Income inequality**:
 - More unequal wages in manufacturing in i than in j due to better technology matches
 - Larger size of research sector, which pays higher reward to ability
Cross-country Comparisons in Autarky

Capacity to Innovate

- **Capacity to innovate** described by three parameters
 - Size of labor force: \(N_c \)
 - Efficiency of knowledge accumulation: \(\theta_{Kc} \)
 - Productivity of inventors: \(\theta_{Tc} \), where \(T_c(a) = \theta_{Tc} T(a) \)

- In \(RR \) and \(AA \) curves, these parameters enter as product: \(N_c \theta_{Kc} \theta_{Tc} \)

- If \(N_i \theta_{Ki} \theta_{Ti} > N_j \theta_{Kj} \theta_{Tj} \) \(\Rightarrow \) \(a_{Ri} < a_{Rj} \) and \(g_{Mi} > g_{Mj} \)

- **Income inequality:**
 - More unequal wages in manufacturing in \(i \) than in \(j \) due to better technology matches
 - Larger size of research sector, which pays higher reward to ability

 \(\Rightarrow \) **More inequality overall**
Modified AA curve: \((1 - s_c) (\rho + g_{Mc}) = \theta_K \Lambda (a_{Rc})\)
- Modified AA curve: $(1 - s_c) (\rho + g_{Mc}) = \theta_K N \Lambda (a_{Rc})$
- $s_i > s_j \Rightarrow$ AA curve lies above and to left in i
R&D Subsidies

- Modified AA curve: \((1 - s_c)(\rho + g_{Mc}) = \theta_K N\Lambda(a_{Rc})\)
- \(s_i > s_j \Rightarrow AA\) curve lies above and to left in \(i\)
- \(\Rightarrow\) Faster growth and more wage inequality in \(i\)
Suppose i and j differ in their sets of manufacturing technologies.

- Matching in manufacturing: Better technologies in i imply better matches in i for given a. But $a_{Ri} > a_{Rj}$ (larger manuf sector) means worse matches in i. First effect dominates: matches better for worker type a in i than j.

- Growth faster in j than i (comparative advantage in research).

- Income inequality: More unequal in i at the bottom end of the distribution. j has a larger research sector and R&D pays a greater return to ability. There exists a middle range of abilities such that for a in this range, relative wage is higher in i than in j compared to a_{\min} and compared to a_{\max}.
Suppose i and j differ in their sets of manufacturing technologies.

Let G_c be truncated Pareto with common shape parameter k, common lower bound φ_{min}, and upper bounds $\bar{\varphi}_i > \bar{\varphi}_j$.

Better technologies in i) better matches in i for given a_R.

Matching in manufacturing:

But $a_{Ri} > a_{Rj}$ (larger manuf sector) \quad \Rightarrow \text{worse matches in } i$.

First effect dominates: matches better for worker type a in i than j.

Growth faster in j than i (comparative advantage in research).

Income inequality: More unequal in i at bottom end of distribution.

There exists middle range of abilities such that for a in this range, relative wage is higher in i than in j compared to a_{min} and compared to a_{max}.
Suppose \(i \) and \(j \) differ in their sets of manufacturing technologies.

Let \(G_c \) be truncated Pareto with common shape parameter \(k \), common lower bound \(\phi_{\text{min}} \), and upper bounds \(\bar{\phi}_i > \bar{\phi}_j \).

Matching in manufacturing:

- Better technologies in \(i \) yield better matches in \(i \)
- But if \(a_{Ri} > a_{Rj} \) (larger manufacturing sector): worse matches in \(i \)
- First effect dominates: matches better for worker type \(a \) in \(i \) than \(j \)
- Growth faster in \(j \) than \(i \) (comparative advantage in research)
- Income inequality:
 - More unequal in \(i \) at bottom end of distribution
 - \(j \) has larger research sector and R&D pays greater return to ability
 - There exists middle range of abilities such that for \(a \) in this range, relative wage is higher in \(i \) than in \(j \) compared to \(a_{\text{min}} \) and compared to \(a_{\text{max}} \)
Suppose i and j differ in their sets of manufacturing technologies.

Let G_c be truncated Pareto with common shape parameter k, common lower bound φ_{\min}, and upper bounds $\bar{\varphi}_i > \bar{\varphi}_j$.

Matching in manufacturing:

- Better technologies in $i \Rightarrow$ better matches in i for given a_R.
Suppose i and j differ in their sets of manufacturing technologies.
Let G_c be truncated Pareto with common shape parameter k, common lower bound φ_{min}, and upper bounds $\bar{\varphi}_i > \bar{\varphi}_j$.
Matching in manufacturing:
- Better technologies in i \Rightarrow better matches in i for given a_R.
- But $a_{Ri} > a_{Rj}$ (larger manufacturing sector) \Rightarrow worse matches in i.

Suppose \(i \) and \(j \) differ in their sets of manufacturing technologies.

Let \(G_c \) be truncated Pareto with common shape parameter \(k \), common lower bound \(\phi_{\text{min}} \), and upper bounds \(\bar{\phi}_i > \bar{\phi}_j \).

Matching in manufacturing:

- Better technologies in \(i \) \(\Rightarrow \) better matches in \(i \) for given \(a_R \)
- But \(a_{Ri} > a_{Rj} \) (larger manuf sector) \(\Rightarrow \) worse matches in \(i \)
- First effect dominates: matches better for worker type \(a \) in \(i \) than \(j \)
Suppose \(i \) and \(j \) differ in their sets of manufacturing technologies.

Let \(G_c \) be truncated Pareto with common shape parameter \(k \), common lower bound \(\phi_{\text{min}} \), and upper bounds \(\bar{\phi}_i > \bar{\phi}_j \).

Matching in manufacturing:
- Better technologies in \(i \) ⇒ better matches in \(i \) for given \(a_R \)
- But \(a_{Ri} > a_{Rj} \) (larger manuf sector) ⇒ worse matches in \(i \)
- First effect dominates: matches better for worker type \(a \) in \(i \) than \(j \)

Growth faster in \(j \) than \(i \) (comparative advantage in research)
Suppose i and j differ in their sets of manufacturing technologies.

Let G_c be truncated Pareto with common shape parameter k, common lower bound ϕ_{min}, and upper bounds $\bar{\phi}_i > \bar{\phi}_j$.

Matching in manufacturing:

- Better technologies in i ⇒ better matches in i for given a_R.
- But $a_{R_i} > a_{R_j}$ (larger manuf sector) ⇒ worse matches in i.
- First effect dominates: matches better for worker type a in i than j.

Growth faster in j than i (*comparative advantage* in research).

Income inequality:
Suppose i and j differ in their sets of manufacturing technologies.

Let G_c be truncated Pareto with common shape parameter k, common lower bound ϕ_{\min}, and upper bounds $\bar{\phi}_i > \bar{\phi}_j$.

Matching in manufacturing:
- Better technologies in i \Rightarrow better matches in i for given a_R
- But $a_{Ri} > a_{Rj}$ (larger manuf sector) \Rightarrow worse matches in i
- First effect dominates: matches better for worker type a in i than j

Growth faster in j than i (comparative advantage in research)

Income inequality:
- More unequal in i at bottom end of distribution
Suppose i and j differ in their sets of manufacturing technologies.

Let G_c be truncated Pareto with common shape parameter k, common lower bound ϕ_{min}, and upper bounds $\bar{\phi}_i > \bar{\phi}_j$.

Matching in manufacturing:
- Better technologies in $i \Rightarrow$ better matches in i for given a_R
- But $a_{Ri} > a_{Rj}$ (larger manuf sector) \Rightarrow worse matches in i
- First effect dominates: matches better for worker type a in i than j

Growth faster in j than i (comparative advantage in research)

Income inequality:
- More unequal in i at bottom end of distribution
- j has larger research sector and R&D pays greater return to ability
Suppose \(i \) and \(j \) differ in their sets of manufacturing technologies

Let \(G_c \) be truncated Pareto with common shape parameter \(k \), common lower bound \(\varphi_{\min} \), and upper bounds \(\bar{\varphi}_i > \bar{\varphi}_j \)

Matching in manufacturing:

- Better technologies in \(i \) \(\Rightarrow \) better matches in \(i \) for given \(a_R \)
- But \(a_{Ri} > a_{Rj} \) (larger manuf sector) \(\Rightarrow \) worse matches in \(i \)
- First effect dominates: matches better for worker type \(a \) in \(i \) than \(j \)

Growth faster in \(j \) than \(i \) (comparative advantage in research)

Income inequality:

- More unequal in \(i \) at bottom end of distribution
- \(j \) has larger research sector and R&D pays greater return to ability
- There exists middle range of abilities such that for \(a \) in this range, relative wage is higher in \(i \) than in \(j \) compared to \(a_{\min} \) and compared to \(a_{\max} \)
C countries
Costly trade in intermediate goods due to tariffs and/or shipping.
Delivered price in j is τ_{jc} times as great as source price in c.

C countries
International Integration: Trade and Knowledge Spillovers

- C countries
- Costly trade in intermediate goods due to tariffs and/or shipping. Delivered price in j is τ_{jc} times as great as source price in c
- Final goods nontradable

$$\left\{ \sum_{j=1}^{C} \left[\int_{\omega \in \Omega_j} p_{jc} (\omega)^{1-\sigma} \, d\omega \right] \right\}^{\frac{1}{1-\sigma}} = q_c,$$
- C countries
- Costly trade in intermediate goods due to tariffs and/or shipping. Delivered price in j is τ_{jc} times as great as source price in c
- Final goods nontradable

$$\left\{ \sum_{j=1}^{C} \left[\int_{\omega \in \Omega_j} p_{jc} (\omega)^{1-\sigma} \, d\omega \right] \right\}^{\frac{1}{1-\sigma}} = q_c,$$

- R&D subsidies at rate s_c
International Integration: Trade and Knowledge Spillovers

- C countries
- Costly trade in intermediate goods due to tariffs and/or shipping. Delivered price in j is τ_{jc} times as great as source price in c.
- Final goods nontradable

$$\left\{ \sum_{j=1}^{C} \left[\int_{\omega \in \Omega_j} p_{jc} (\omega)^{1-\sigma} \, d\omega \right] \right\}^{\frac{1}{1-\sigma}} = q_c,$$

- R&D subsidies at rate s_c
- Asymmetries: $\theta_{\psi_c}, \theta_{T_c}, N_c$
Knowledge Spillovers

- Partial (or complete) knowledge spillovers:

\[K_c = \sum_{j=1}^{C} \theta_{Kjc} M_j \text{ for all } j \text{ and } c \]
Partial (or complete) knowledge spillovers:

\[K_c = \sum_{j=1}^{C} \theta_{Kjc} M_j \text{ for all } j \text{ and } c \]

Assume \(\theta_{Kjc} > 0 \) for all \(j \) and \(c \)
Knowledge Spillovers

- Partial (or complete) knowledge spillovers:

\[K_c = \sum_{j=1}^{C} \theta_{Kjc} M_j \] for all \(j \) and \(c \)

- Assume \(\theta_{Kjc} > 0 \) for all \(j \) and \(c \)
- \(\theta_{Kcc} \) measures effectiveness with which country \(c \) converts own research experience into usable knowledge
Knowledge Spillovers

- Partial (or complete) knowledge spillovers:

\[K_c = \sum_{j=1}^{C} \theta_{Kjc} M_j \text{ for all } j \text{ and } c \]

- Assume \(\theta_{Kjc} > 0 \) for all \(j \) and \(c \)
- \(\theta_{Kcc} \) measures effectiveness with which country \(c \) converts own research experience into usable knowledge
 - Analogous to \(\theta_K \) in autarky
Knowledge Spillovers

- Partial (or complete) knowledge spillovers:

\[K_c = \sum_{j=1}^{C} \theta_{Kjc} M_j \text{ for all } j \text{ and } c \]

- Assume \(\theta_{Kjc} > 0 \) for all \(j \) and \(c \)
- \(\theta_{Kcc} \) measures effectiveness with which country \(c \) converts own research experience into usable knowledge
 - Analogous to \(\theta_K \) in autarky
 - Note that \(\kappa_c \equiv K_c / M_c > \theta_{Kcc} \)
Knowledge Spillovers

- Partial (or complete) knowledge spillovers:

\[K_c = \sum_{j=1}^{C} \theta_{K_{jc}} M_j \text{ for all } j \text{ and } c \]

- Assume \(\theta_{K_{jc}} > 0 \) for all \(j \) and \(c \)
- \(\theta_{K_{cc}} \) measures effectiveness with which country \(c \) converts own research experience into usable knowledge
 - Analogous to \(\theta_{K} \) in autarky
 - Note that \(\kappa_c \equiv K_c / M_c > \theta_{K_{cc}} \)
- Complete spillovers: \(\theta_{K_{jc}} = \theta_{K_{c}} \) for all \(j \)
Knowledge Spillovers

- Partial (or complete) knowledge spillovers:

\[K_c = \sum_{j=1}^{C} \theta_{K_{jc}} M_j \] for all \(j \) and \(c \)

- Assume \(\theta_{K_{jc}} > 0 \) for all \(j \) and \(c \)
- \(\theta_{K_{cc}} \) measures effectiveness with which country \(c \) converts own research experience into usable knowledge
 - Analogous to \(\theta_K \) in autarky
 - Note that \(\kappa_c \equiv K_c / M_c > \theta_{K_{cc}} \)
- Complete spillovers: \(\theta_{K_{jc}} = \theta_{K_c} \) for all \(j \)
- Complete spillovers with symmetry in ability to absorb: \(\theta_{K_{jc}} = \theta_K \) for all \(j \) and \(c \)
Find that *market access* plays role of demand level X:

$$\tilde{X}_c = \sum_j \tau_{jc}^{1-\sigma} q_j^{\sigma} X_j$$
Find that *market access* plays role of demand level X:

$$\bar{X}_c = \sum_j \tau_{jc}^{1-\sigma} q_j^\sigma X_j$$

⇒ Convergence in long-run growth rates
Find that market access plays role of demand level X:

$$\bar{X}_c = \sum_j \tau_{jc}^{1-\sigma} q_j^\sigma X_j$$

\Rightarrow Convergence in long-run growth rates

Opening of trade:
Find that *market access* plays role of demand level X:

$$\bar{X}_c = \sum_j \tau_{jc}^{1-\sigma} q_j^\sigma X_j$$

⇒ Convergence in long-run growth rates

Opening of trade:

- More labor allocated to R&D in every country
Find that *market access* plays role of demand level X:

$$\bar{X}_c = \sum_j \tau_{jc}^{1-\sigma} q_j^\sigma X_j$$

Convergence in long-run growth rates

Opening of trade:

- More labor allocated to R&D in every country
- Growth rate faster in every country
Effects of Trade on Growth and Inequality

- Find that *market access* plays role of demand level X:
 \[\bar{X}_c = \sum_j \tau_{jc}^{1-\sigma} q_j^\sigma X_j \]

- ⇒ Convergence in long-run growth rates

- Opening of trade:
 - More labor allocated to R&D in every country
 - Growth rate faster in every country
 - Greater income inequality in every country
International Asymmetries

1 Differences in Manufacturing Productivity and Trade Barriers

Convergence in growth rates and wage inequality

An increase in θK_{jc} raises growth and inequality in all countries

Greater inequality in i than in j at bottom of distribution, but at least as great inequality in j at top

Grossman and Helpman (2015)
International Asymmetries

1 Differences in Manufacturing Productivity and Trade Barriers
 1 Convergence in growth rates and wage inequality

2 Change in τ_{jc} or $\theta_{\psi_{c}}$ have no effect on long-run growth or inequality

2 Differences in Innovation Capacity or in Ability to Create and Absorb Knowledge Spillovers
 2 An increase in $\theta_{K_{jc}}$ raises growth and inequality in all countries

3 Differences in R&D Subsidies
 If $s_{i} > s_{j}$ and international knowledge spillovers are complete, then $a_{R_{i}} < a_{R_{j}}$ and more wage inequality in i than in j

4 Differences in Technology Sets
 If $\bar{\phi}_{i} > \bar{\phi}_{j}$ and international knowledge spillovers are complete, then $a_{R_{i}} > a_{R_{j}}$
 2 Greater inequality in i than in j at bottom of distribution, but at least as great inequality in j at top
International Asymmetries

1 Differences in Manufacturing Productivity and Trade Barriers
 1 Convergence in growth rates and wage inequality
 2 Change in τ_{jc} or $\theta_{\psi c}$ have no effect on long-run growth or inequality
International Asymmetries

1. Differences in Manufacturing Productivity and Trade Barriers
 1. Convergence in growth rates and wage inequality
 2. Change in τ_{jc} or $\theta_{\psi c}$ have no effect on long-run growth or inequality

2. Differences in Innovation Capacity or in Ability to Create and Absorb Knowledge Spillovers
International Asymmetries

1. Differences in Manufacturing Productivity and Trade Barriers
 1. Convergence in growth rates and wage inequality
 2. Change in τ_{jc} or θ_{ψ_c} have no effect on long-run growth or inequality

2. Differences in Innovation Capacity or in Ability to Create and Absorb Knowledge Spillovers
 1. Convergence in growth rates and wage inequality
International Asymmetries

1 Differences in Manufacturing Productivity and Trade Barriers
 1 Convergence in growth rates and wage inequality
 2 Change in τ_{jc} or $\theta_{\psi c}$ have no effect on long-run growth or inequality

2 Differences in Innovation Capacity or in Ability to Create and Absorb Knowledge Spillovers
 1 Convergence in growth rates and wage inequality
 2 An increase in θ_{Kjc} raises growth and inequality in all countries

Grossman and Helpman (2015) Growth, Trade, and Inequality
International Asymmetries

1. Differences in Manufacturing Productivity and Trade Barriers
 1. Convergence in growth rates and wage inequality
 2. Change in τ_{jc} or $\theta \psi_c$ have no effect on long-run growth or inequality

2. Differences in Innovation Capacity or in Ability to Create and Absorb Knowledge Spillovers
 1. Convergence in growth rates and wage inequality
 2. An increase in θK_{jc} raises growth and inequality in all countries

3. Differences in R&D Subsidies
International Asymmetries

1. Differences in Manufacturing Productivity and Trade Barriers
 1. Convergence in growth rates and wage inequality
 2. Change in τ_{jc} or θ_{ψ_c} have no effect on long-run growth or inequality

2. Differences in Innovation Capacity or in Ability to Create and Absorb Knowledge Spillovers
 1. Convergence in growth rates and wage inequality
 2. An increase in θ_{Kjc} raises growth and inequality in all countries

3. Differences in R&D Subsidies
 - If $s_i > s_j$ and international knowledge spillovers are complete, then $a_{Ri} < a_{Rj}$ and more wage inequality in i than in j
International Asymmetries

1 Differences in Manufacturing Productivity and Trade Barriers
 1 Convergence in growth rates and wage inequality
 2 Change in τ_{jc} or $\theta_{\psi c}$ have no effect on long-run growth or inequality

2 Differences in Innovation Capacity or in Ability to Create and Absorb Knowledge Spillovers
 1 Convergence in growth rates and wage inequality
 2 An increase in θ_{Kjc} raises growth and inequality in all countries

3 Differences in R&D Subsidies
 - If $s_i > s_j$ and international knowledge spillovers are complete, then $a_{Ri} < a_{Rj}$ and more wage inequality in i than in j

4 Differences in Technology Sets
International Asymmetries

1 Differences in Manufacturing Productivity and Trade Barriers
 1 Convergence in growth rates and wage inequality
 2 Change in τ_{jc} or $\theta_\psi c$ have no effect on long-run growth or inequality

2 Differences in Innovation Capacity or in Ability to Create and Absorb Knowledge Spillovers
 1 Convergence in growth rates and wage inequality
 2 An increase in θ_{Kjc} raises growth and inequality in all countries

3 Differences in R&D Subsidies
 If $s_i > s_j$ and international knowledge spillovers are complete, then $a_{Ri} < a_{Rj}$ and more wage inequality in i than in j

4 Differences in Technology Sets
 1 If $\bar{\phi}_i > \bar{\phi}_j$ and international knowledge spillovers are complete, then $a_{Ri} > a_{Rj}$
International Asymmetries

1. Differences in Manufacturing Productivity and Trade Barriers
 1. Convergence in growth rates and wage inequality
 2. Change in τ_{jc} or θ_{jc} have no effect on long-run growth or inequality

2. Differences in Innovation Capacity or in Ability to Create and Absorb Knowledge Spillovers
 1. Convergence in growth rates and wage inequality
 2. An increase in θ_{Kjc} raises growth and inequality in all countries

3. Differences in R&D Subsidies
 - If $s_i > s_j$ and international knowledge spillovers are complete, then $a_{Ri} < a_{Rj}$ and more wage inequality in i than in j

4. Differences in Technology Sets
 1. If $\bar{\phi}_i > \bar{\phi}_j$ and international knowledge spillovers are complete, then $a_{Ri} > a_{Rj}$
 2. Greater inequality in i than in j at bottom of distribution, but at least as great inequality in j at top
Conclusions

- International integration affords researcher access to larger knowledge stock \(\Rightarrow \) accelerates innovation and growth
Conclusions

- International integration affords researcher access to larger knowledge stock ⇒ accelerates innovation and growth
- Expansion of idea-generating sector generates ubiquitous increase in income inequality
Conclusions

- International integration affords researcher access to larger knowledge stock ⇒ accelerates innovation and growth
- Expansion of idea-generating sector generates ubiquitous increase in income inequality
- Technological conditions and government policies have spillover effects abroad
Conclusions

- International integration affords researcher access to larger knowledge stock \Rightarrow accelerates innovation and growth
- Expansion of idea-generating sector generates ubiquitous increase in income inequality
- Technological conditions and government policies have spillover effects abroad
- Have abstracted from

Grossman and Helpman

Growth, Trade, and Inequality

February 2015
Conclusions

- International integration affords researcher access to larger knowledge stock \(\Rightarrow \) accelerates innovation and growth
- Expansion of idea-generating sector generates ubiquitous increase in income inequality
- Technological conditions and government policies have spillover effects abroad

Have abstracted from

1. Diversity in manufacturing industries (factor intensities, etc.)
Conclusions

- International integration affords researcher access to larger knowledge stock ⇒ accelerates innovation and growth
- Expansion of idea-generating sector generates ubiquitous increase in income inequality
- Technological conditions and government policies have spillover effects abroad

Have abstracted from

1. Diversity in manufacturing industries (factor intensities, etc.)
2. Team production activities that involve multiple types of individuals
Conclusions

- International integration affords researcher access to larger knowledge stock ⇒ accelerates innovation and growth
- Expansion of idea-generating sector generates ubiquitous increase in income inequality
- Technological conditions and government policies have spillover effects abroad

Have abstracted from

1. Diversity in manufacturing industries (factor intensities, etc.)
2. Team production activities that involve multiple types of individuals
3. Capital inputs that may be complementary to certain types of worker or inventors
Conclusions

- International integration affords researcher access to larger knowledge stock ⇒ accelerates innovation and growth
- Expansion of idea-generating sector generates ubiquitous increase in income inequality
- Technological conditions and government policies have spillover effects abroad

Have abstracted from

1. Diversity in manufacturing industries (factor intensities, etc.)
2. Team production activities that involve multiple types of individuals
3. Capital inputs that may be complementary to certain types of worker or inventors
4. Frictions in labor market and in financing new ideas
Conclusions

- International integration affords researcher access to larger knowledge stock ⇒ accelerates innovation and growth
- Expansion of idea-generating sector generates ubiquitous increase in income inequality
- Technological conditions and government policies have spillover effects abroad

Have abstracted from

1. Diversity in manufacturing industries (factor intensities, etc.)
2. Team production activities that involve multiple types of individuals
3. Capital inputs that may be complementary to certain types of worker or inventors
4. Frictions in labor market and in financing new ideas
5. Superstar potential for those at top end, especially in open economy