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Notation and conventions

All rings are assumed to be commutative with unit 1 6= 0 unless
otherwise stated. If A is a ring and S is a set, then A(S) denotes the
free A-module generated by the set S, consisting of all formal sums∑

s∈S as · s with as = 0 for all but finitely many s ∈ S.
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2 NOTATION AND CONVENTIONS



CHAPTER 1

The Picard Group

1. Tensor products and localization

Let A be a ring, and let M and N be A-modules. The tensor
product of M and N solves the universal problem for A-bilinear maps
from M × N to an A-module.If S is a set let A(S) denote the free
A-module generated by the set S.

Proposition 1.1. Let R be the submodule of A(M×N) generated by
the elements of the form

(x + x′, y)− (x, y)− (x′, y), (ax, y)− (x, ay),
(x, y + y′)− (x, y)− (x, y′), (ax, y)− a (x, y),

where x, x
′ ∈ M , y, y

′ ∈ N , and where a ∈ A. Denote by M ⊗A N the
module A(M×N)/R and by x ⊗ y the image of (x, y) in the quotient.
Then, for each A-module P and each A-bilinear map ϕ : M ×N → P ,
there exists a unique A-linear map ψ : M ⊗A N → P such that for each
(x, y) ∈ M ×N , ϕ ((x, y)) = ψ (x⊗ y).

The proof is straightforward. It is clear from the proposition that
the A-module M ⊗A N is generated over A by the elements x⊗ y.

Example 1.1. The tensor product of non-zero modules can
be zero. If A = Z, and if n and m are relatively prime integers, then
Z/nZ⊗ZZ/mZ is annihilated by m and by n by bilinearity. Therefore,
since there exist integers a and b such that am + bn = 1, the tensor
product is annihilated by 1.

Example 1.2. Let J be an ideal of A, then M ⊗A A/J = M/JM ;
in particular, J ⊗A A/J = J/J2.

Let A be a ring. An ideal p of A is prime if A/p is an integral
domain. An ideal m of A is maximal if A/m is a field. It is immediate
that every maximal ideal is prime.

The following lemma yields a characterization of the set of nilpotent
elements of a ring.

Lemma 1.2. Let A be a ring. If x ∈ A satisfies xn 6= 0 for each
n ∈ N, then there exists a prime ideal p such that x /∈ p.
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4 1. THE PICARD GROUP

Proof. Let I be the set of ideals of A that do not contain xn for
any n. The set I is nonempty since it contains the zero ideal, I is
partially ordered by inclusion, and the union of a chain of ideals of I is
an ideal of I. By Zorn’s lemma, I contains a maximal element. Such
an element p must be prime. For if a, b ∈ A with a /∈ p and b /∈ p, xn

is in (p + (a)) ∩ (p + (b)) for some n ≥ 1 by maximality, which implies
that x2n is in p + (ab). By definition of I, ab /∈ p, hence p is prime and
x /∈ p.

Corollary 1.3. Let A be a ring and let I be an ideal of A with
I 6= A. Then A contains a maximal ideal M containing I.

Proof. Apply Lemma 1.2 to the ring A/I and the element x =
1.

Definition 1.4. Let A be a ring and let I be an ideal of A. The
radical of I is denoted by

√
I = {a ∈ A : an ∈ I for some n > 0 } .

Corollary 1.5. Let I be an ideal of A, then
√

I =
⋂

I⊆p. p prime

p.

Proof. Apply Lemma 1.2 to the ring A/
√

I and a nonzero element

x. It follows that A/
√

I contains a prime ideal p that does not contain
x.

Definition 1.6. The ring A is a local ring with maximal ideal m
if every ideal of A not equal to A is contained in m.

The ring k [[X1, . . . , Xn]] of formal power series with coefficients in
a field k is a local ring with maximal ideal generated by the Xi.

Definition 1.7. An A-module M is of finite type if M is finitely
generated over A.

Proposition 1.8 (Nakayama’s Lemma). Let A be a local ring
with maximal ideal m, and let M be an A-module of finite type such
that M ⊗A A/m = 0. Then M = 0.

Proof. Let x1, . . . xn generate M over A. By hypothesis, mM = M ,
hence there exist elements mi,j ∈ m such that for 1 ≤ i ≤ n,

xi =
∑n

j=1
mi,jxj.
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Let Φ denote the matrix (mi,j − δi,j), and let x and 0 denote the column
vector of the xi and the zero column vector, so that Φx = 0. If Φ∗ is
the transpose of the matrix of cofactors of Φ one has

Φ∗Φ = det(Φ)Id.

Cramer’s rule is valid in any ring, so that det (Φ) xi = 0 for each i. But
the determinant det(Φ) is invertible in A since it equals (−1)n modulo
m.

Corollary 1.9. Let A be a local ring with maximal ideal m and let
M be an A-module of finite type. A set of n elements of M , generate M
over A if and only if their images in M⊗AA/m generate this A-module
as a vector space over A/m.

Exercise 1.1. Let A be a ring, let M,N,N
′

be A-modules, and
let ϕ : N

′ → N be an A-linear map.
a) Show that the map 1×ϕ : M ×N

′ → M ×N induces a natural
A-linear map M ⊗A N

′ → M ⊗A N , denoted by 1⊗ ϕ.
b) Show that the assignment N 7→ M ⊗A N is thus an additive

covariant functor from the category of A-modules to itself.
c) Show that the functor M ⊗A · is right exact; that is, if

0 → N
′ → N → N

′′ → 0

is an exact sequence of A-modules, then

M ⊗A N
′ −→ M ⊗A N −→ M ⊗A N

′′ → 0

is exact.
d) An A-module M is said to be flat if the functor M ⊗A · is exact;

i.e., both left and right exact. Show that a free A-module is flat.
e) Let A be a local ring with nonzero maximal ideal m. Show that

A/m is not flat as an A-module.

Definition 1.10. Let A be a ring, and let S be a subset of A. S
is said to be multiplicatively stable if 1 ∈ S and if x, y ∈ S implies
that xy ∈ S. Let S be a multiplicatively stable subset of A. The
localization of M at S, denoted by S−1M , is defined as the quotient
of M × S modulo the equivalence relation ∼, where (m, s) ∼ (

m
′
, s

′)
if and only if there exists t ∈ S with tms

′
= tsm

′
.Often we will denote

the image of (m, f) by m
f
.

Exercise 1.2. Let A be a ring, S a multiplicatively stable subset
of A, and let M be an A-module.

a) Verify that S−1M is an S−1A-module and that

S−1M = M ⊗A S−1A.



6 1. THE PICARD GROUP

b) There is a canonical map M → S−1M which sends x to (x, 1).
Show that the image of x is zero if and only if there exists s ∈ S such
that sx = 0.

Definition 1.11. Let A be a ring and let M be an A-module. The
annihilator of an element m in M is denoted by

Ann(m) = {a ∈ A : am = 0} .

The annihilator of an element of M is an ideal of A. Let S be a
multiplicatively stable subset of A and let m be in M . The exercise 1.2
b) above shows that if Ann(x) ∩ S = ∅ then x is not zero in S−1M .

Lemma 1.12. Let M be an A-module such that Mp = 0 for every
prime ideal p. Then M = 0.

Proof. Let x ∈ M , then Ann(x) equals A; otherwise there is a
maximal ideal m containing Ann(x). However, since Mm = 0, Exercise
1.2 b) implies that A−m meets Ann(x).

Definition 1.13. Let f be an element of A and M be an A mod-
ule.We will call M localised at f and note Mf ,the module S−1M where
S = {(fn}n≥0.

Exercise 1.3. Let A be a ring, S a multiplicatively stable subset
of A, and let M be an A-module.

a) Show that S−1A is flat as an A-module.
b) If p is a prime ideal of A,then S = A−p is multiplicatively stable.

Let Ap and Mp denote the localization of A and M , respectively, at S.
Show using Exercise 1.2 that if M is of finite type and Mp = 0, then
there exists f ∈ A, f /∈ p such that Mf = 0.

c) Verify that if p is a prime ideal of A then Ap is a local ring with
maximal ideal pAp.

Exercise 1.4. Let A be a ring, let S be a multiplicatively stable
subset of A not containing 0, and let ϕ : A → S−1A be the canonical
map. Show that the map given by p 7→ϕ−1 (p) is a bijection from the
set of prime ideals of S−1A to the set of prime ideals of A that have
empty intersection with S.

Definition 1.14. An A-module M is said to be of finite presen-
tation if there exist positive integers n,m and an exact sequence

An → Am → M → 0.

For example, a module of finite type over a Noetherian ring is of
finite presentation.
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Exercise 1.5. Let S be an additive functor from the category of
A-modules to the category of abelian groups. Show that for every A-
module M , F (M) has a natural structure as an A-module. Suppose
moreover that A is right exact. Show then that F (M) = M ⊗A F (A)
for every A-module M of finite presentation.

Exercise 1.6. The module of differentials. Let A → B be a
homomorphism of rings. Let I be the kernel of the map B ⊗A B → B
that sends x⊗ y to xy.

a) Show that I is a B-module generated by the elements of the form
x⊗ 1− 1⊗ x.

b) Let d be the map from B to I/I2 that sends x in B to the
coset of x ⊗ 1 − 1 ⊗ x. Show that d satisfies the Leibniz formula
d(xy) = x dx + y dx. The module I/I2 is denoted by Ω1

B/A and is called
the module of differentials of B over A.

c) Show that if M is a B-module and ϕ : B → M is an A-linear map
such that ϕ(xy) = xϕ(y) + yϕ(x), then there exists a unique B-linear
map ψ : Ω1

B/A → M such that ϕ = ψ ◦ d.

d) Let F (X) be a polynomial with coefficients in a ring A, and let
B be the ring A [X] /(F (X)). Show that Ω1

B/A ' B/(F
′
(X)), where X

is the image of X in B, and where F
′
is the derivative of F .

e) More generally, let A → C be a homomorphism of rings, let J be
an ideal of C, and let B = C/J . Show that there is an exact sequence

J/J2 d⊗1−→ Ω1
C/A ⊗B B −→ Ω1

B/A −→ 0.

2. Universal algebras

Let M be an A-module, and let n be a nonnegative integer. For
n > 0, let Tn(M) denote the n-fold tensor product of M with itself:
M ⊗A M ⊗A · · · ⊗A M , and define T0(M) = A.

The product

(x1 ⊗ · · · ⊗ xj) · (y1 ⊗ · · · ⊗ yk) = x1 ⊗ · · · ⊗ xj ⊗ y1 ⊗ · · · ⊗ yk

provides the direct sum T (M) =
⊕

n≥0 Tn(M) with the structure of
an associative algebra (noncommutative in general) with unit element.
It is easy to verify that for every A-homomorphism ϕ : M → N , where
B is an associative A-algebra, there exists one and only one homomor-
phism of A-algebras ψ : T (M) → B such that ϕ is the composite of ψ
and the canonical injection M → T1(M) ↪→ T (M). We call T(M) the
tensor algebra of M .

We can then define other universal algebras that are also graded.
The symmetric algebra of M is denoted by Sym(M) and is defined
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as T (M)/I, where I is the ideal of T (M) generated by the elements
x ⊗ y − y ⊗ x, where x, y ∈ M . The ideal I is generated by homo-
geneous elements of degree two, so the symmetric algebra Sym(M) =⊕

n≥0 Symn(M) is graded, where Symn(M) = Tn(M)/ (Tn(M) ∩ I).
One easily verifies that the symmetric algebra is universal in the

following sense: for each A-homomorphism ϕ : M → B of M to a
commutative A-algebra, there exists one and only one A-algebra ho-
momorphism ψ : Sym(M) → B such that ϕ is the composite of ψ and
the canonical injection M → Sym1(M) ↪→ Sym(M). For example, one
verifies that if M = Ar is a free A-module of rank r, then its symmetric
algebra Sym(Ar) is a polynomial ring A [X1, . . . , Xr].

The exterior algebra of M is denoted by ΛM and is defined as
T (M)/J , where J is the ideal of T (M) generated by the elements of the
form x⊗ x, where x ∈ M . It is a graded A-algebra with direct sum de-
composition ΛM =

⊕
n≥0 ΛnM , where Λn(M) = Tn(M)/ (Tn(M) ∩ J).

One verifies easily that Λn(M) = 0 for n strictly greater than the num-
ber of generators of M as an A-module. One customarily denotes
by x1 ∧ · · · ∧ xn the image in Λn(M) of the element x1 ⊗ · · · ⊗ xn in
Tn(M). The exterior algebra is universal in the following sense: for each
A-homomorphism ϕ : M → B of M to an A-algebra, where ϕ(M) con-
sists of elements of square zero (for example, if B is a graded antisym-
metric algebra and ϕ(M) is homogeneous of odd degree), there exists
one and only one A-algebra homomorphism ψ : Λ(M) → B such that ϕ
is the composite of ψ and the canonical injection M → Λ1(M) ↪→ Λ(M).

Exercise 2.1. Show that Tn, Symn, and Λn are functors from the
category of A-modules to itself. Verify that if M = N ⊕ P is a direct
sum, then

Tn(M) =
n⊕

k=0

(Tk(N)⊗A Tn−k(P ))(
n
k) .

3. Schemes and projective schemes

We present here algebraic varieties in the language of schemes of A.
Grothendieck. The language of schemes has the advantage of a uniform
treatment of algebraic varieties and arithmetic varieties.

Definition 3.1. Let A be a ring. The spectrum of A, denoted
by Spec A, is the set of prime ideals of A. Let I be an ideal of A we
denoted by V (I), the set of prime ideals of A that contain I.

We have seen that each ideal of A that is not equal to A is contained
in a prime ideal of A.

We denote by Spec-max A the set of maximal ideals of A.
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Example 3.1. Let k be a field and let A = k [x1, . . . xn] be an
algebra of finite type over k. Choosing variables X1, . . . , Xn, A can be
regarded as a quotient of the ring of polynomials k [X1, . . . , Xn] by an
ideal generated by a finite set of polynomials F1, . . . , Fm. Given a finite
set of polynomials Fj, an algebraic variety is the set of all n-tuples

a = (a1, . . . , an) of elements of k (the algebraic closure of k) such that
Fj(a) = 0 for each j. The set of common zeros of the Fj is denoted by
Z(F ). There is a map Z(F ) → Spec-max(A) that sends the element
a = (a1, . . . , an) to the kernel of the map from k [X1, . . . , Xn] to k
which evaluates a polynomial at the point a. Hilbert’s Nullstellensatz
asserts that this map is a bijection when k = k.

Proposition 3.2. The collection of sets V (I) of Definition 3.1 are
the closed sets of a topology on Spec A. A base of open sets for this
topology is given by the collection of the sets Spec Af , where f ∈ A.

Definition 3.3. The topology on Spec A defined in Proposition
3.2 is called the Zariski topology. If f is in A, we denote by D(f)
the open set Spec Af .

Let A be a ring and let f ∈ A. By Lemma 1.2, D(f) is the set of
prime ideals of A that do not contain f .

Proof of Proposition 3.2. The intersection of an arbitrary col-
lection V (Ij)j∈J of closed sets is equal to the closed set V (

∑
j∈J Ij).

(Recall that the sum of the collection (Ij)j∈J is the set of all finite sums
of elements each of which is contained in some ideal Ij). The union of
a finite set of closed sets V (I1), . . . , V (In) is equal to V (I1 ∩ · · · ∩ In).
The empty set is equal to V (A) and Spec (A) is equal to V ((0)).

Remark 3.4. It is clear that if I is the ideal generated by the
elements (fj)j∈J , then

Spec A− V (I) =
⋃
j∈J

Spec Afj
.

Remark 3.5. If A is an integral domain, then two nonempty open
subsets of Spec A always have nonempty intersection. This holds since
the zero ideal (0) of an integral domain is prime, hence it is contained in
every nonempty basic open set D(f), for f in A. One cannot therefore
separate two points of Spec A by disjoint open neighborhoods.

The Zariski topology is as we see stranger than what we are used
to. Nevertheless, the following exercise shows that it is not always too
bad.
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Exercise 3.1. Let A = C ([0, 1],R) be the ring of continuous real-
valued functions on the unit interval [0.1]. Show that the map which as-
sociates to x in [0, 1] the kernel of evaluation map C ([0, 1],R) → R at x
is a homeomorphism of [0, 1] with the usual topology onto Spec-max A
with the topology induced by the Zariski topology on Spec A.

Proposition 3.6. Let A be a ring, then Spec A with the Zariski
topology is quasi-compact.

Proof. Let (Ui)i∈I be an open covering of Spec A. By considering
refinements of the given cover by basic open sets, we may suppose that
each open set Ui has the form D(fi) for some fi in A. The assertion
that (D(fi))i∈I covers Spec A means that the ideal J generated by the
fi is equal to the ring A; otherwise there would be a maximal ideal
m such that fi ∈ J ⊆ m ∈ D(fi) for some i, which is a contradiction.
Therefore, there exists a finite subset i1, . . . , in of I and elements λij

of A such that
n∑

j=1

λijfij = 1

(i.e., a partition of unity). Equivalently, the closed set V ((fi1 , . . . , fin))
is empty, therefore by Remark (3.4), the collection D(fij)j=1,... ,n is an
open cover of Spec A.

Exercise 3.2. Show that there is a canonical bijection between
the set of coverings of Spec A by two nonempty disjoint open sets and
the set of pairs of nontrivial idempotent elements e1, e2 of A such that
e1 + e2 = 1 and e1e2 = 0.

Definition 3.7. A property is called local if it is true in an open
neighborhood of any point.

Exercise 3.3. Let A be a ring. Show that for an A-module to be
of finite type is a local property for the Zariski topology.

Definition 3.8. The category Open(X) of open subsets of a topo-
logical space X is the category whose objects are the open subsets of
X, and whose arrows are the inclusion maps between open sets.

Definition 3.9. Let X be a topological space. A contravariant
functor F on Open(X) with values in a category of sets is called F is
a presheaf on X. The presheaf F is a sheaf if for each open set U
of X, and for each open covering (Ui)i∈I of U , the following conditions
are satisfied.

(i) If two elements of F (U) have the same image in F (Ui) for each
i, then they are equal.
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(ii) If si ∈ F (Ui) for each i ∈ I, and if the images of si and sj

coincide in F (Ui ∩ Uj) for each pair (i, j), then there exists s in F (U)
whose image in each F (Ui) is si.

Definition 3.10. A ringed space is a topological space X to-
gether with a sheaf of rings on X.

Exercise 3.4. The sheaf of real valued functions on a topological
space X. For U open in X, let F (U) = F(U,R) be the set of real
valued functions defined on U . If i : V ↪→ U is an inclusion of open
subsets of X, let F (i) : F(U,R) → F(V,R) be the restriction of a
function defined on U to V . F is a presheaf. It is easy to see that F is
a sheaf. One can also define the sheaf F c of continuous functions, the
sheaf F i of i-times differentiable functions, the sheaf F∞ of infinitely
differentiable functions, and the sheaf F ω of real analytic functions on
any suitable topological space.

In view of the previous examples of sheaves, if F is a sheaf on X and
if V ↪→ U is an inclusion of open sets, the induced map F (U) → F (V )
is called the restriction of U to V . If U is an open subset of X, then
an element of F (U) is called a section over U . If V is an open subset
of U , and if s is a section over U , then the restriction of s to V is
denoted by s|V .

The following proposition leads to a definition of the “sheaf of al-
gebraic functions” on the topological space Spec A, where A is a ring.

Proposition 3.11. Let A be a ring, M an A-module, and let (D(fi))i∈I

be a covering of Spec A by basic open sets. The following sequence is
exact

0 → M →
∏

i

Mfi

ϕ→
∏
i,j

Mfifj

where ϕ((xi)) = ((xi|D(fifj) − xj|D(fifj)))i,j.

Proof. First, suppose that the index set I of the open cover (D(fi))i∈I

of Spec A is finite.
Since (D(fi))i∈I is a covering of Spec A, there exists a collection

(λi)i∈I of elements of A such that∑
i∈I

λifi = 1.

For each i ∈ I and for each positive integer n we have D(fi) = D(fn
i ),

hence each positive integer n there exist λi,n ∈ A such that
∑
i∈I

λi,nf
n
i = 1.
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Exactness at M is immediate. Suppose the element x in M becomes
0 in Mfi

for each i ∈ I. Then for each i ∈ I, there is an ni such that
fni

i x = 0. If n = sup {ni : i ∈ I}, then

x =
∑
i∈I

λi,nf
n
i x = 0.

For exactness at
∏

i∈I Mfi
, suppose that (xi)i∈I is in ker ϕ. For each

i ∈ I there exist zi ∈ M and ni such that

xi =
zi

fni
i

.

Taking n = sup {ni : i ∈ I} and yi = zif
n−ni
i we have that

xi =
zif

n−ni
i

fn
i

=
yi

fn
i

for each i ∈ I.
Furthermore, there exist integers ni,j for i, j ∈ I such that

yjf
n
i (fifj)

ni,j = yif
n
j (fifj)

ni,j .

Taking m = sup {ni,j : i, j ∈ I} we have

yjf
n
i (fifj)

m = yif
n
j (fifj)

m.

Multiplying by λi,n+m and adding over i ∈ I we obtain

yjf
m
j =

∑
i∈I

(yjf
m
j )λi,n+mfn+m

i =
∑
i∈I

yif
n
j λi,n+m(fifj)

m

= fn+m
j

∑
i∈I

yiλi,n+mfm
i .

Setting y =
∑

i∈I yiλi,n+mfm
i we have that for each j ∈ I, yjf

m
j =

yfn+m
j , hence

xj =
yj

fn
j

=
y

1
.

This proves the exactness of the sequence of 3.11 for a finite open cover
of Spec A.

Next, suppose that the open cover (D(fi))i∈I of Spec A is not nec-
essarily finite. By quasi-compactness of Spec A, there exists a finite
subset K of I such that (D(fi))i∈K is an open cover of Spec A. We
have shown that the sequence of 3.11 is exact for i, j ∈ K. We show
that the sequence of 3.11 is exact for i, j ∈ I.

Exactness at M follows trivially, since if x ∈ M becomes 0 in Mfi

for each i ∈ I, then x becomes 0 in each Mfi
for i ∈ K, hence by

exactness of 3.11 for the open cover determined by K, x = 0.
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Exactness at
∏

i∈I Mfi
also holds. Suppose that (xi)i∈I is in ker ϕ.

By previous remarks, there exists an element xK in M that becomes
equal to xi in Mfi

for i ∈ K. Let j ∈ I and let L = K ∪ {j}. Again
by previous remarks, there exists an element xL in M that becomes
equal to xi in Mfi

for i ∈ L. Since xK − xL = 0 in Mfi
for i ∈ K, by

exactness for the finite cover determined by K, xK = xL. Consequently,
xK becomes equal to xj in Mfj

. Since j ∈ I is arbitrary, exactness at
the product term

∏
i∈I Mfi

follows.

Let X be a topological space, and let B be a base of open sets for
the topology of X. We may consider B as a category with Obj(B) equal
to B, and such that for U, V ∈ B, HomB(V, U) contains the inclusion
V ↪→ U if V is contained in U , and is empty otherwise. If F is a
contravariant functor from B to a category of modules, we say that F
is a sheaf with respect to B if F is a sheaf with respect to coverings
of basic open sets by basic open sets; more precisely, whenever U is
in B and (Ui)i∈I is a covering of U by elements Ui in B, the following
sequence is exact

0 −→ F(U) −→
∏
i∈I

F(Ui)
ϕ−→

∏
i,j∈I

F(Ui ∩ Uj)

where ϕ ((si)i∈I) =
(
si|Ui∩Uj

− si|Ui∩Uj

)
i,j

.

If U is open in X, we write BU for the set of elements of B contained
in U .

Definition 3.12. A preordered set (D,≤) is a nonempty set D
together with a reflexive transitive relation on D.

Definition 3.13. Let (D,≤) be a preordered ordered set consid-
ered as a category. An inverse system of modules is a contravariant
functor F from D to a category of modules.

Definition 3.14. Let X be a topological space and let B be a base
for the topology of X, and let F be a contravariant functor from B to
a category of modules. Fix U open in X. The inverse limit of the
inverse system F is the module

lim←−
W∈BU

F(W ) :=

{
α ∈

∏
W∈BU

F(W ) : V ⊆ W ⊆ U ⇒ α(W )|V = α(V )

}

together with the canonical projections

πV : lim←−
W∈BU

F(W ) −→ F(V )

for V ∈ BU .
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Recall the universal property of the inverse limit.

Exercise 3.5. Let X be a topological space, let B be a base for
the topology of X, and let F be a contravariant functor from B to a
category of modules. Let M be a module together with a family of
maps ρV : M → F(V ) for V ∈ B such that ρW,V ◦ ρW = ρV , where
V ⊆ W and where ρW,V : F(W ) → F(V ) is the restriction.

Then for each U open in X, there is a unique map

ϕU : M −→ lim←−
W∈BU

F(W )

such that πU ◦ ϕU = ρU .

If F is a sheaf with respect to a base for a topology on X, the

following proposition shows how to canonically extend F to a sheaf F̃
on X.

Proposition 3.15. Let X be a topological space, and suppose that
B is a base for the open subsets of X that is closed under intersection.
Let F be a contravariant functor from B to a category of modules that

is a sheaf with respect to B. Define a presheaf F̃ on each open set U
of X by

F̃(U) := lim←−
W∈BU

F(W )

and on each inclusion of open sets V ↪→ U by the restriction map

F̃(U) → F̃(V ), which sends a map α : BU → ⋃
w∈BU

F(W ) to its re-

striction to BV (i.e., α|BV
). Then F̃ is a sheaf, and for each basic open

set U ∈ B, F̃ |U is naturally isomorphic to F .

Proof. Given U open in X and given a collection (Ui)i∈I of open
subsets of X such that U =

⋃
i∈I Ui we show that the following sequence

is exact

0 −→ F̃(U) −→
∏
i∈I

F̃(Ui)
ϕ−→

∏
i,j∈I

F̃(Ui ∩ Uj)

where ϕ ((αi)i∈I) =
(
αi|BUi∩Uj

− αj|BUi∩Uj

)
i,j

.

For exactness at F̃(U), suppose that α ∈ F̃(U) satisfies

α|BUi
= 0

for each i ∈ I. Fix W in BU . Let (Wi,j)j∈Ji
be an open covering of

Ui by basic open sets Wi,j ∈ BUi
. Since B is closed under intersection,
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(W ∩Wi,j)i∈I,j∈Ji
is a covering of W by elements of B. By definition

of α,

α(W )|W∩Wi,j
= α(W ∩Wi,j) = 0

for each i ∈ I, j ∈ Ji. Since F is a sheaf with respect to B, α(W ) = 0.
Since W ∈ BU is arbitrary, α = 0.

For exactness at
∏

i∈I F̃(Ui), suppose that (αi)i∈I is a collection of

elements with αi ∈ F̃(Ui) such that

αi|BUi∩Uj
= αj|BUi∩Uj

for each i, j in I.
Let W ∈ BU and let (Wi,j)j∈Ji

be an open covering of Ui by basic
open sets Wi,j ∈ BUi

. Then the collection of Wi,j = W ∩ Wi,j is a
covering of W by basic open sets Wi,j ⊆ Ui.

Consider the family of elements αi(Wi,j) ∈ F(Wi,j). We have that

αi(Wi,j)|Wi,j∩Wk,l
= αi(Wi,j ∩Wk,l) = αk(Wi,j ∩Wk,l) = αk(Wi,j)|Wi,j∩Wk,l

where the first and third equality holds by definition of the inverse
limit, and where the second equality holds by hypothesis. By the sheaf
property of F with respect to B, there exists a section sW ∈ F(W )
such that

sW |Wi,j
= αi(Wi,j)

for each i in I and j in Ji. We set α(W ) = sW .
We claim that

α ∈ F̃(U) = lim←−
W∈BU

F(W );

that is, if V and W are in B and if V ⊆ W ⊆ U , then α(W )|V = α(V ).
Let Wi,j be an open cover of W with Wi,j ⊆ Ui as above. By

definition of α,

α(W )|Wi,j
= αi(Wi,j).

Restricting the preceding equality further,

α(W )|V ∩Wi,j
= αi(Wi,j)|V ∩Wi,j

= αi(V ∩Wi,j) = α(V )|V ∩Wi,j
,

where the second equality holds by definition of αi, and where the third
equality holds by definition of α(V ), since the collection (V ∩Wi.j) is
a covering of V by basic open sets. By the sheaf property of F ,

α(W )|V = α(V )|V = α(V ).

Finally, it follows by previous remarks that for each i in I,

α|BUi
= αi.
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Exercise 3.6. Let A be a ring, and let M be an A-module. Show
that for f, g ∈ A, if the basic open sets D(f) and D(g) are equal, then
Mf is canonically isomorphic to Mg. Hence, show that the assignment
D(f) 7→ Mf defines an inverse system of A-modules.

Definition 3.16. Let A be a ring, and let M be an A-module.
Let B be the base for the Zariski topology on Spec A given by the sets
D(f) for f ∈ A. By the preceding exercise, the assignment D(f) 7→ Mf

defines an inverse system of A-modules. We define a presheaf M̃ on
Spec A as follows. For U open in Spec A, we define

M̃(U) := lim←−
D(f)⊆U

Mf

and for U, V open with V ⊆ U , the restriction map M̃(U) → M̃(V )

sends α ∈ M̃(U) to α|BV
.

Theorem 3.17. Let A be a ring and let M be an A-module. The

functor M̃ defined in Proposition 3.15 is a sheaf.

Proof. By Exercise 3.6 and by Proposition 3.15 it follows that the
assignment D(f) 7→ Mf defines a sheaf of modules with respect to the
collection of basic open sets of Spec A. It follows from Proposition 3.15

that the functor M̃ is a sheaf.

Definition 3.18. Let A be a ring. The affine scheme defined by
A is by definition the topological space Spec A together with the sheaf

of rings Ã.

By abuse of language, one also refers to Spec A as the affine scheme
determined by A.

Definition 3.19. A preordered set (D,≤) is directed if for ele-
ments a, b in D, there exists an element c in D with a ≤ c and b ≤ c.

Definition 3.20. Let X be a topological space, and let x be a
point of X. The set of neighborhoods of x, denoted by Nbd(X, x),
is the set of open subsets U of X with x ∈ U .

Example 3.2. If X is a topological space and if x is in X, then
the set (Nbd(X, x),⊇) of neighborhoods of x ordered by containment
is a preordered, directed set.

Definition 3.21. Let (D,≤) be a preordered, directed set. A
functor F : (D,≤) → C from (D,≤) to a category C of modules is
called a direct system of modules.
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Example 3.3. Let X be a topological space, let A be a ring, and
let F be a presheaf of A-modules on X. For any point x of X, the re-
striction F|(Nbd(X, x),⊇)op of the presheaf F to the opposite category
of the set of neighborhoods of x under containment is a direct system.
Taking the opposite category converts F into a covariant functor.

Definition 3.22. Let X be a topological space, let A be a ring,
let F be a presheaf of A-modules on X, and let x be a point of X. The
direct limit of the direct system of A-modules F|(Nbd(X, x),⊇)op is
the A-module

lim→
x∈U

F(U) :=

(⊕

x∈U

F(U)

)
/M

where M is the submodule of the direct sum generated by the elements
iU(s)− iV (s|V ), where U and V are open neighborhoods of x, V ⊆ U ,
s is in F(U), and where iU denotes the canonical map of F(U) into the
direct sum.

Recall the universal property of the direct limit.

Exercise 3.7. Let X be a topological space, let A be a ring, and let
F and G be presheaves of A-modules. Show that a natural transforma-
tion τ from the direct system F|(Nbd(X, x),⊇)op to G|(Nbd(X, x),⊇)op

induces a unique map

τx : lim→
x∈U

F(U) → lim→
x∈U

G(U).

If M is an A-module, we let M also denote the constant presheaf with
value M . A natural transformation τ : F → M induces a unique map

τx : lim→
x∈U

F(U) → M

for each x in X.

Definition 3.23. Let X be a topological space, let A be a ring,
let OX be a sheaf of A-modules on X, and let x be a point of X. The
stalk of OX at x is the A-module

OX,x := lim→
x∈U

F(U)

For each open set U containing x, there is a canonical map OX(U) →
OX,x which sends a section s defined over U to the its equivalence class,
denoted by sx and called the germ of s at x.
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Remark 3.24. Let X be a topological space, let A be a ring, let
OX be a sheaf of A-modules on X, and let x be a point of X. The
stalk OX,x can be defined as the set of pairs (U, s) where U is an
open neighborhood of x, and where s is in OX(U), under the following
equivalence relation. Two such pairs (U, s) and (V, t) are equivalent if
and only if there exists an open set W with x ∈ W ⊆ U ∩ V such that
s|W = t|W .

Definition 3.25. A ringed space (X,OX) is a locally ringed
space if for each x in X, the stalk OX,x is a local ring.

Example 3.4. An affine scheme is a locally ringed space.

The direct image of a sheaf is needed to state the definition of a
morphism of ringed spaces.

Definition 3.26. Let ϕ : X → Y be a continuous map of topolog-
ical spaces. If F is a sheaf on X, then ϕ∗F denotes the direct image
presheaf Y , given on an open subset U of Y by ϕ∗F(U) = F(ϕ−1(U)).

Proposition 3.27. The direct image presheaf defined in Definition
3.26 is a sheaf.

Definition 3.28. Let (X,OX) and (Y,OY ) be ringed spaces. A
morphism of ringed spaces (ϕ, ϕ#) : (X,OX) → (Y,OY ) is a pair
consisting of a continuous map ϕ : X → Y and a morphism ϕ# : OY → ϕ∗OX

of sheaves.

Remark 3.29. Let (X,OX) and (Y,OY ) be ringed spaces, and let
x be a point of X. A morphism of ringed spaces

(ϕ, ϕ#) : (X,OX) → (Y,OY )

induces a map

ϕ#
x : OY,ϕ(x) → OX,x

given by the following prescription. Represent the germ sϕ(x) of a
section at the point ϕ(x) by a pair (U, s), where U is an open set in
Y containing ϕ(x), and where s is in OY (U). The map ϕ#

x sends the

germ sϕ(x) to the germ of ϕ#
U (s) at x.

Exercise 3.8. In the notation of Remark 3.29, show that the in-
duced map ϕ#

x is well-defined as follows.
(a) Show that ϕ# induces a natural transformation of direct systems

ϕx : OY |(Nbd(Y, ϕ(x)),⊇)op → ϕ∗OX |(Nbd(Y, ϕ(x)),⊇)op

(b) Show that there is a natural transformation

τx : ϕ∗OX |(Nbd(Y, ϕ(x)),⊇)op → OX,x
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(c) Obtain the map ϕ#
x as the map induced by τx ◦ ϕx by taking

direct limits.

Definition 3.30. Let (A,m) and (B, n) be local rings. A mor-
phism of local rings is a ring homomorphism ϕ : A → B such that
ϕ−1(n) = m.

Definition 3.31. Let (X,OX) and (Y,OY ) be locally ringed spaces.
A morphism of locally ringed spaces is a morphism

(ϕ, ϕ#) : (X,OX) → (Y,OY )

of ringed spaces such that for each point x of X, the induced map
ϕ#

x : OY,ϕ(x) → OX,x on stalks is a morphism of local rings.

Definition 3.32. A locally ringed space (X,OX) is a scheme if
for each point x in X, there is a ring A and an open set U ⊆ X
containing the point x such that the locally ringed space (U,OX |U) and

the affine scheme (Spec A, Ã) are isomorphic as locally ringed spaces.

Definition 3.33. A morphism X → Y of schemes is a morphism
as locally ringed spaces.

Proposition 3.34. Let X be a scheme and let A be a ring. Then
the canonical map

HomSch(X, Spec A)) → HomRing(A, Γ(X,OX)),

which sends the morphism of schemes
(
ϕ, ϕ#

)
: (X,OX) →

(
Spec A, Ã

)

to the ring homomorphism ϕ#
Spec A, is a bijection.

If A and B are rings, and if ϕ : A → B is a ring homomorphism,
then the preimage of ϕ induces a map ϕ∗ : Spec B → Spec A which
sends a prime ideal p of A to ϕ−1(p), which is a prime ideal of A.

Proposition 3.35. Let ϕ : A → B be a ring homomorphism. The
induced map ϕ∗ : Spec B → Spec A is continuous.

Proof. This is an immediate consequence of the identity

(ϕ∗)−1(D(f)) = D(ϕ(f)),

where f is an element of the ring A.

Example 3.5. Let ϕ : A → B be a ring homomorphism. The
induced map

ϕ∗ : Spec B → Spec A
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itself induces a morphism

ϕ# : Ã → (ϕ∗)∗B̃

of the associated sheaves of A and B by the universal property of the
inverse limit. In general, by taking inverse limits over basic open sets
contained in a given open subset U of Spec A, the universal property
of the inverse limit yields a map

ϕ#
U : Ã(U) → (ϕ∗)∗B̃(U),

and such maps commute with restriction maps. Hence, a ring homo-

morphism ϕ : A → B induces a morphism (ϕ, ϕ#) : (Spec B, B̃) →
(Spec A, Ã) of affine schemes.

In particular, if f is in A, we have a natural map Af → Bϕ(f), which
induces a map

Ã(D(f)) → (ϕ∗)∗B̃(D(f)).

This map is (to within canonical isomorphism) the map Af → Bϕ(f)

since Ã(D(f)) = Af and (ϕ∗)∗B̃(D(f)) = B̃((ϕ∗)−1D(f)) = B(D(ϕ(f))) =
Bϕ(f) by Proposition 3.35. One may recover the original ring homo-
morphism ϕ by taking f = 1, so that D(f) = Spec A.

Example 3.6 (Arithmetic surface). A prime ideal p in the polyno-
mial ring Z[x] must be one of the following:

(i). the zero ideal (0).
(ii). A principal ideal pZ[x] for p prime in Z.
(iii). A maximal ideal (p, F ) for p prime in Z and where F is a

primitive irreducible polynomial in Z[x] that remains irreducible after
reduction modulo p.

(iv). A principal ideal (F ) where F is an irreducible polynomial of
positive degree in Z[x] of content 1.

A proof is as follows. Let p be a prime ideal of the ring Z[x].
Since Z[x] is an integral domain, the zero ideal (0) is prime, so we may
suppose that p is a nonzero ideal. The ring Z is noetherian, so by
Hilbert’s basis theorem, the ring Z[x] is noetherian. Hence the ideal p
is finitely generated, say

p = (a1, . . . , an, f1, . . . , fn) ,

where the ai, if present, are nonzero elements of Z, and where the fi,
if present, are polynomials of positive degree.

Suppose that p = (a1, . . . , an). Since Z is a principal ideal domain,
calculating in the ideal with degree zero polynomials in Z[x] shows that
p = (n) for some integer n which must be prime since p is prime.
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Suppose that p = (a1, . . . , an, f1, . . . , fn). By the previous case,
we may suppose that p = (p, f1, . . . , fn) where p is a prime of Z.
Since Fp[x] is a principal ideal domain, we have (f1, . . . , fn) = (F ) for
some polynomial F in Fp[x]. Note that each polynomial fi in p can
be replaced with its reduction modulo p without changing the ideal.
Furthermore, all computations with the polynomial generators fi in
the ideal p can be performed modulo p, in particular, the computation
in Fp[x] expressing F as the greatest common divisor of the fi can
be performed in the ideal p, which implies that p = (p, f1, . . . , fn) =
(p, F ), where F must remain irreducible modulo p since p is prime.

Finally, suppose that p = (f1, . . . , fn). We proceed by induction
and suppose that p = (f, g). Since p is prime, f and g can be taken
irreducible of content 1 (since p is prime and Z[x] is a UFD, an ir-
reducible factor of f must lie in p, so f can be taken to irreducible
without changing p. Either the content of f is in p or the primitive
part of f is in p. The content of f cannot be in p in the case under
consideration).

Choose h in p of minimal degree. By previous remarks, h must be
irreducible of content 1. In Q[x], write f = h · q + r where either r = 0
or deg r < deg h. Clearing denominators, there is an integer a such
that a · f = h · q + r where we can assume that q and r lie in Z[x]. By
minimality of the degree of h, r = 0. By Gauss’s Lemma, which states
that the content is multiplicative, we have

a = cont(a · f) = cont(h · q) = cont(q),

since h and f have content 1. It follows that f = h ·u with u primitive.
Since f is irreducible, u must be a unit. Therefore, p = (f, g) = (h, g).
Repeating the argument with g in place of f , we have (h, g) = (h). By
induction, we obtain what we want.

The inclusion map i : Z ↪→ Z[x] induces a continuous map

i∗ : Spec Z[x] → Spec Z.

Figure 1 illustrates the arithmetic surface Spec Z[x], with primes of
Z[x] fibred over corresponding primes of Z. To illustrate Arakelov
theory, a new “complex prime” is shown (for illustrative purposes only)
adjoined to Spec Z[x] that is thought of as if it were fibred over a
corresponding new “prime at infinity” adjoined to Spec Z.

Our first example of a non-affine scheme is the projective scheme
over a ring. Let R be a ring graded in nonnegative degrees:

R =
⊕
n≥0

Rn.
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For simplicity we suppose that R is generated as an R0-algebra by R1.
The polynomial algebra R0[X0, . . . , Xk] is a graded ring of this type.
If A is a ring and if I is an ideal of A, the graded ring

⊕
n≥0 In where

I0 = A is also of this type.

Definition 3.36. If R is a graded ring, we define the irrelevant
ideal R+ of R to be the direct sum

⊕
n≥1 Rn.

Definition 3.37. If R is a graded ring, we define the set Proj R
to be the set of homogeneous prime ideals of R that do not contain
R+.

Let R be a graded ring, graded in nonnegative degrees. If f is a
homogeneous element of degree n in R then the localized ring Rf is a
Z-graded ring (homogeneous elements of negative degree are possible).
If x is homogeneous of degree m then xf−h is of degree m−hn for each
h ∈ Z. In particular, if f is of degree one, the degree zero part of Rf ,
denoted by (Rf )0, consists of elements xf−n where x is in Rn.

Proposition 3.38. Let R be a graded ring, graded in nonnegative
degrees, let f be a homogeneous element of R of degree 1, and let X be
a new variable of degree 1. There is a canonical isomorphism

ϕ : (Rf )0 [X, X−1] → Rf

which sends X to f .

Proof. The map ϕ is surjective, since if a/fn ∈ Rf with a homo-
geneous of degree d, then ϕ

(
(a/fd)Xd−n

)
= (a/fd)fd−n = a/fn.

For injectivity, suppose that
∑k=n

k=−n rkX
k is in the kernel of ϕ, so

that
∑k=n

k=−n rkf
k = 0 holds Rf . Multiplying by fn, we may suppose

(reindexing the rk) that
∑l

k=0 rkf
k = 0 for l = 2n. For each k, rk =

xk/f
dk where dk is the degree of xk. Let j be the maximum degree dk

of the xk. Multiplying by f j,
∑l

k=0 xkf
j−dk+k = 0 in Rf , and taking

j sufficiently large we may suppose that this identity holds in R. The
degree of the term xkf

j−dk+k is j +k, hence it is the only homogeneous
summand of degree j + k in the sum, and it must be zero. It follows
that

l∑

k=0

rkX
k =

l∑

k=0

xk

fdk

f j−dk+k

f j−dk+k
Xk = 0.

Dividing by Xn (and reindexing the rk) we have that
∑k=n

k=−n rkX
k =

0
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Definition 3.39. Let f be a homogeneous element of R. We define
the basic open set determined by f , denoted by D+(f), by

D+(f) = {p ∈ Proj R : f /∈ p}.
It is clear that D+f = D(f) ∩ Proj R.

Definition 3.40. Let I be a graded ideal of R. The set V+(I) is
the set of prime ideals of Proj R which contain I.

It is clear that V+(f) = V (f) ∩ Proj R. It is easy to check the
following exercise.

Exercise 3.9. The subsets V+(I) defined in 3.40 are the closed
sets of a topology on Proj R. A basis of opens for this topology is
given by the collection of the sets D+(f) for f homogeneous in R.

Theorem 3.41. Let R be a ring graded in nonnegative degrees, and
let M be a graded R-module. Then the function which to a basic open
set D+(f), corresponding to a homogeneous element f of R of positive
degree, associates the module (Mf )0 extends to a sheaf on Proj R that

we denote by M̃ . The ringed space
(
Proj R, R̃

)
is a scheme which

on D+(f) is isomorphic to Spec (Rf )0. Moreover, for each graded R-
module M , there is a canonical isomorphism

M̃ |D+(f) → (̃Mf )0.

Towards the proof of Theorem 3.41, we prove the following.

Lemma 3.42. Let R be a ring graded in nonnegative degrees, and
let f be a homogeneous element of R. The map

ϕ : D+(f) → Spec (Rf )0

which sends the graded ideal p ∈ D+(f) to the degree zero part of the
extension of p to (Rf )0 is a homeomorphism, whose inverse ψ sends
the prime ideal q to the prime ideal of R given by{

x : For each homogeneous component y of x,∃m,n ≥ 1,
ym

fn
∈ q

}
.

Proof. We show first that ψ is well defined. Let q be a homo-
geneous prime ideal in (Rf )0. We claim that p = ψ(q) is in D+(f).
Clearly f /∈ p, or else 1 is in q.

If x is in p then by definition each homogeneous component of x
is in p. If y is also in p and x and y have no nonzero homogeneous
components xd and yd of the same degree d, then x + y is in p by
definition. Suppose that x and y are homogeneous elements of p of the
same degree. We may suppose that there are positive integers m and n
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such that both xm/fn and ym/fn are in p. By the binomial theorem,
we have

(x + y)2m

f 2n
=

m∑

k=0

(
2m

k

)
ym−kxk

fn

xm

fn
+

m∑

k=1

(
2m

m + k

)
xm−kyk

fn

xm

fn

which is a sum of elements in q, hence x + y is in p.
Ler r be a homogeneous element of R, and let x be a homogeneous

element of p so that for some m,n ≥ 1, xm/fn is in q. Let a be the
degree of r, and let b be the degree of f so that rb/fa is in (Rf )0. Since
(rb/fa)m is in (Rf )0 and (xm/fn)b is in q, we have (rx)bm/fam+bn ∈ q.
Hence rx is in p.

This shows that p is a homogeneous ideal of R with f /∈ p. We
show that p is prime. Let x, y be homogeneous elements of R with xy
in p. Then

XY

F
∈ q

where X is a power of x, Y is a power of y, and F is a power of f . Let
a be the degree of X, b the degree of Y , and c the degree of F . Then
a + b = c and (

XY

F

)c

=
Xc

F a

Y c

F b
∈ q

where the fractions Xc/F a and Y c/F b have degree 0. Since q is prime,
either Xc/F a ∈ q or Y c/F b ∈ q. Hence either x or y is in p.

Note that for p ∈ D+(f), ϕ(p) = pRf ∩ (Rf )0. It is easy to show
that ϕ and ψ are mutually inverse. Since they preserve inclusions, they
are continuous.

4. Projective modules

Definition 4.1. Let A be a ring. An A-module P is called projec-
tive if for every surjective A-homomorphism M → M ′ of A-modules,
the canonical homomorphism HomA(P,M) → HomA(P,M ′) is surjec-
tive.

The A-module A is projective. The direct sum of any set of pro-
jective A-modules is projective. Thus, if I is a set, the free A-module
A(I) is a projective A-module.

Proposition 4.2. Let A be a ring, and let P be an A-module. The
following statements are equivalent.

(i) P is projective.
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(ii) The functor HomA(P, ·) is exact; i.e., transforms exact se-
quences into exact sequences.

(iii) P is a direct summand of a free A-module.

Proof. Statement (ii) is a reformulation of (i). If P is a direct
summand of a free A-module A(I), then HomA(P, ·) is a “direct sum-
mand” of HomA

(
A(I), ·), which is clearly exact, so (iii) implies (ii).

For the converse, let (xi)i∈I be a family of generators for P over A,

so that one has a surjection α : A(I) → P . By (ii), the induced
map HomA

(
A(I), P

) → HomA(P, P ) is surjective, hence there exists β :

P → A(I) such that α◦β = 1P , which implies that A(I) = β (P )⊕ ker α.
To see this, note that x ∈ A(I) has the form x = βα(x) + (x− βα(x))
so that βα(x) ∈ β(P ) and x− βα(x) ∈ ker α.

Note that P is a projective A-module of finite type if and only if P
is a direct summand of a free A-module of finite type.

Definition 4.3. Let A be a ring and let A be an A-module. We
denote by M∨, called M dual, the A-module HomA(M, A).

For A-modules M and N there is a canonical map

M∨ ⊗A N → HomA(M, N)

which to ϕ⊗ v associates the A-linear map from M to N given by
w 7→ ϕ(w)v.

Proposition 4.4. Let A be a ring and let P be an A-module. The
following statements are equivalent.

(i) P is a projective A-module of finite type.
(ii) The canonical map

P∨ ⊗A P → EndA (P )

is surjective.

Proof. The implication (i) implies (ii) is evident for free modules
of finite type. By Proposition 4.2 it is also true for projective mod-
ules. For (ii) implies (i), observe that the identity map 1P on P is in
the image of P∨ ⊗A P . Hence, for some positive integer n, there ex-
ist linear maps ϕ1, . . . , ϕn : P → A, and elements x1, . . . , xn of P such
that y =

∑n
i=1 ϕi(y)xi for each y in P . Therefore, the xi generate P ,

and so one has a surjection α : An → P → 0 which associates the stan-
dard basis element ei of An with xi. The map β : An → P defined by
β(y) =

∑n
i=1 ϕi(y)ei satisfies α ◦ β = 1P , hence (i) holds by Proposition

4.2.
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Exercise 4.1. Under the conditions of Proposition 4.4 show that
P∨ ⊗A P → EndA (P ) is an isomorphism (verify this first for P free of
finite type).

Exercise 4.2. Let A be a ring.
a) For each A-module M , verify that there is a canonical A-linear

map (the evaluation map) M∨ ⊗A M → A which sends ϕ⊗ y to ϕ(y).
b) If P is an free A-module of finite type, verify, using Exercises 4.1

and 4.2 a), that the image of f ∈ EndA(P ) by the composite map

EndA(P ) → P∨ ⊗A P → A

is the trace of f . One thus defines the trace of an endomorphism
of a projective module of finite type.

Exercise 4.3. Let A be a ring. For each A-module M there is a
canonical A-linear map

M → M∨∨.

a) Verify that if M is projective of finite type, then the preceding
homomorphism is bijective.

b) Show that if M is projective of finite type then so is M∨.

Exercise 4.4. Let A be a ring.
a) Verify that a projective A-module is flat. b) Let S be a multi-

plicatively stable subset of A. Show that if P is a projective A-module,
then S−1P is a projective S−1A-module.

c) If P is a projective A-module, show that for each integer n, the
A-modules Tn(P ), Symn(P ), and Λn(P ) are projective.

Proposition 4.5. Let A be a ring and let M be an A-module. If
M is projective of finite type, then M is finitely presented.

Proof. Suppose that M is projective of finite type, and let α :
An → M be an epimorphism. Since M is projective, there is a map
β : M → An such that α ◦ β = 1M . It follows that An = ker α ⊕M ,
hence ker α is of finite type, since it is a quotient of An. Therefore,
there is an exact sequence

Am −→ An α−→ M −→ 0.

Exercise 4.5. Let M be an A-module, suppose that (D(fi))
n
i=1 is

an open cover of Spec A, and suppose that Mfi
is a free Afi

-module of
finite rank for each i. Show that M is finitely presented.
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Definition 4.6. Let A be a ring and let M be an A-module. We
say that M is punctually free of finite type if for each prime ideal
p ∈ Spec A, the localized module Mp is a free Ap-module of finite type.

Theorem 4.7. Let A be a ring and let P be an A-module. The
following statements are equivalent.

i) P is projective of finite type.
ii) P is locally free of finite type for the Zariski topology on Spec(A).
iii) P is punctually free of finite type.

Proof. Lemma 4.8 below shows that (iii) implies (ii), while Lemma
4.9 below shows that (i) implies (iii).

To show that (ii) implies (i) we use Proposition 4.4. Let

M = coker (P∨ ⊗A P → EndA (P )).

Since P is locally free for the Zariski topology, there exist elements
f1, . . . , fn ∈ A which form a partition of unity, such that Pfi

is a free
Afi

-module of finite type for each i.
To show that for each i, Mfi

= 0, we use the following two facts.
First, localization commutes with the tensor product; i.e., there is a
canonical isomorphism S−1 (P ⊗A Q) → S−1P ⊗S−1A S−1Q.

In addition, if P is finitely presented, then there is a canonical
isomorphism

S−1HomA(P,Q) → HomS−1A

(
S−1P, S−1Q

)
.

By Exercise 4.5, M is finitely presented, hence

Mfi
= coker (P∨

f ⊗Af
Pf → EndAf

(Pf ))

Since for each i, Pfi
is a free Afi

-module of finite type, the map

P∨
f ⊗Af

Pf → EndAf
(Pf )

is surjective, hence Mfi
= 0 for each i. By Lemma 1.12, M = 0.

Lemma 4.8. Let P be an A-module of finite type. Let p be a prime
ideal of A and suppose that ψ : An

p → Pp is an isomorphism. Then there
exists f ∈ A− p and an isomorphism ϕ : An

f → Pf that extends ψ.

Proof. Let ei be the standard basis element of An
p for 1 ≤ i ≤ n.

There exist elements yi in P and gi ∈ A− p such that

ψ(ei) =
yi

gi

.

Let f =
∏

gi. If ϕ = fψ, then ϕ/f : An
f → Pf extends ψ, although it

need not be an isomorphism. Since P is of finite type, so is coker ψ.
Moreover, coker (ϕ/f)p = coker ψ = 0, so by Exercise 1.3 b) there
exists g in A− p with coker (ϕ/f)g = 0.
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Pfg is a projective Afg-module of finite type by Exercise 4.4 b).
Consequently, the map (ϕ/f)g : An

fg → Pfg splits, making the kernel
ker (ϕ/f)g a quotient of An

fg, hence an Afg-module of finite type. Since
ker ((ϕ/f)g)p = ker ψ = 0, again by Exercise 1.3 b), there exists h in
A−p such that ker (ϕ/f)gh = 0. It follows that (ϕ/f)gh : An

fgh → Pfgh

extends ψ.

Lemma 4.9. Let A be a local ring with maximal ideal m and let P
be a projective A-module of finite type. Then P is a free A-module of
rank equal to dimA/m (P/mP ).

Proof. Let x1, · · · , xn be elements of P that yield a basis of P/mP
over the field A/m. Let ϕ : An → P be an A-homomorphism that
sends the standard basis element ei of An to xi. By Proposition 1.8 ϕ
is surjective. Define the A-module N by the exact sequence

0 → N → An ϕ→ P → 0.

Tensoring by A/m, it follows that

0 → N ⊗A A/m → (A/m)n ϕ→ (P/mP ) → 0

is also exact. By definition, ϕ is a vector space isomorphism, hence
its kernel N ⊗A A/m = N/mN is zero; i.e., N = mN . The module
N is of finite type since P is projective, hence ϕ splits (An = N ⊕ P ).
By Proposition 1.8, N = 0. It follows that P is free of rank n =
dimA/m (P/mP ).

Corollary 4.10. Let A be a ring and let P be a projective A-
module of finite type. The rank function r(P ) : Spec A → N which to a
prime ideal p of A associates the dimension of the vector space Pp/pPp

over the field Ap/pAp, is locally constant.

Proof. Suppose that P is a projective A-module of finite type.
Let (D(fi))

n
i=1 be a finite open covering of Spec A by basic open sets.

By Theorem 4.7, P is locally free of finite rank for the Zariski topology
on Spec A, hence for each i, there exists an integer ni ≥ 1 such that Ani

fi

is isomorphic to Pfi
as an Afi

-module. Since localization is an exact
functor, for each prime ideal p in D(fi), Ani

p is isomorphic to Pp as an
Ap-module. Since the module Pp/pPp = Ani

p /pAni
p = (Ap/pAp)

ni , we
have that

dimAp/pAp Pp/pPp = ni

for each prime ideal p in D(fi).
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Definition 4.11. Let A be a ring and let P be a projective A-
module of finite type. We say that P is of rank n, if the rank function
r(P ) : Spec A → N defined above is constant and equal to n.

5. Invertible modules

Definition 5.1. Let A be a ring. L is an invertible A-module if
and only if L is a projective module of rank one.

Proposition 5.2. Let A be a ring. The following statements are
equivalent.

(1) L is an invertible A-module.
(2) L⊗A L∨ → A is an isomorphism.

Corollary 5.3. If L is invertible, then

A → EndA(L)

is an isomorphism.

Exercise 5.1. Let k be a field, let A = k[x, y] be the polynomial
ring in two variables over k, and let I = (x, y).

1) Show that EndA(I) = A. (Hint: if K is the field of fractions of
A, check that Endk(I ⊗A K) = K).

2) Prove that I is not an invertible A-module.

Exercise 5.2. a) Let P be a projective module of rank n. Show
that ∧nP is invertible.

b) Show that HomA(∧n−1P,∧nP ) = P∨.

Remark 5.4. If L is an invertible A-module, L∨ is also invertible
(note that L∨ ⊗A L∨∨ → A is an isomorphism).

The following exercise is used repeatedly.

Exercise 5.3. If A is a domain, if L1 and L2 are invertible A-
modules, and if ϕ : L1 → L2 is an A-linear map, show that if ϕ 6= 0
then it is injective.

Definition 5.5. Let A be a ring. The Picard group of A, denoted
by Pic(A), is the set of isomorphism classes of invertible A-modules.

Proposition 5.6. The tensor product ⊗A makes Pic(A) into an
abelian group in which the class of the ring A is the neutral element,
and the inverse of the class of an invertible A-module is the class of its
dual.

Proof. Canonical isomorphisms involving the tensor product ⊗A

imply that Pic(A) is a commutative semigroup with neutral element A.
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If L is an invertible A-module, the isomorphism L⊗A L∨ → A implies
that the inverse of the class of an invertible module is the class of its
dual.

Exercise 5.4. Given an exact sequence

0 → P ′ → P → P ′′ → 0

of projective A-modules of finite type, show that

∧maxP = ∧maxP ′ ⊗A ∧maxP ′′.

That is, show that

∧max : {Projective modules of constant rank} → Pic(A)

is an additive function.

6. Invertible sheaves on a scheme

Definition 6.1. Let (X,OX) be a ringed space. A sheaf F of
modules on X is an OX-module if for each open subset U of X, F(U)
is an OX(U)-module, and the module action is compatible with the
restriction maps of F and OX . An OX-module F is locally free if
there is an open cover (Ui)i∈I of X such that for each i ∈ I, F|Ui

is a
free OX |Ui

-module.

Definition 6.2. Let (X,OX) be a scheme. An invertible sheaf
on X is a locally free OX-module L of rank 1.

Definition 6.3. Let X be a topological space and let F and G be
sheaves on X. We let Hom(F ,G) denote the collection of all natural
transformations from F to G. The assignment

Hom(F ,G)(U) = Hom(F|U ,G|U)

defines a sheaf on X called the sheaf Hom.

Definition 6.4. Let (X,OX) be a ringed space, and let F be an
OX-module. The dual sheaf F∨ is the sheaf Hom(F ,OX).

Exercise 6.1. Let (X,OX) be a ringed space. The following prop-
erties of the sheaf hom and the dual sheaf hold for a locally free OX-
module F of finite rank.

1) (F∨)∨ = F
2) If G is an OX-module (not necessarily locally free of finite rank),

then Hom(F ,G) = F∨ ⊗OX
G.

Exercise 6.2. Let (X,OX) be a ringed space. Prove that the set
of isomorphism classes of invertible sheaves on X is a group under the
tensor product ⊗OX

of sheaves.
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Definition 6.5. Let (X,OX) be a ringed space. The set of isomor-
phism classes of invertible sheaves on X is called the Picard group of
X, denoted by Pic(X).

Exercise 6.3. Let X be a scheme. If Spec A ↪→ X is an affine
open subset of X, and if L is an invertible sheaf on X, prove that

L|Spec A = M̃,

where M is an invertible A-module.

Definition 6.6. Let (X,OX) be a scheme, and let F be an OX-
module. F is a quasi-coherent sheaf on X if there is an open cov-
ering (Ui)i∈I of X by affine open subsets Ui = Spec Ai such that for

each i ∈ I there is an Ai-module Mi such that F|Ui
= M̃i. If each

Ai-module Mi is of finite presentation (for example, if Ai is noetherian
and Mi is of finite type), we say that F is a coherent sheaf on X.

An invertible sheaf on a scheme is coherent.
Let (X,OX) be a ringed space, and I be an OX-module. If for each

open subset U of X, I(U) is an ideal of the ring OX(U), then we call I
a sheaf of ideals on X. A coherent sheaf I of ideals of the structure
sheaf OX of a scheme X can be used to define a closed subscheme Y
of X, given by Y = Supp(OX/I) = {p ∈ X : (OX/I)p 6= 0}. The
construction of this subscheme is the “sheaf analogue” of the support
of an A-module M , which is the set of prime ideals p ∈ Spec A such
that Mp 6= 0.

Definition 6.7. A Cartier divisor on a scheme X is a closed
subscheme defined an invertible sheaf of ideals I on X. Equivalently,
I is locally defined by a single element that is not a divisor of zero.
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CHAPTER 2

Rings of dimension one

1. Noetherian rings of dimension zero

2. Principal ideal rings

3. Integral elements

Definition 3.1. Let B be a ring and let A be a subring of B.
One says that the element x of B is integral over A if it satisfies an
equation called an equation of integral dependence of the form

xn + a1x
n−1 + · · ·+ an−1x + an = 0

where the ai are in A. One says that B is integral over A if each ele-
ment of B satisfies an equation of integral dependence with coefficients
in A.

For example, the field C of complex numbers is integral over the
field R of real numbers. Neither C nor R is integral over the field Q of
rational numbers.

Proposition 3.2. Let B be a ring and let A be a subring of B.
Let x be an element of B. The following assertions are equivalent.

(i) X is integral over A.
(ii) The ring A[x] is an A-module of finite type.
(iii) There exists a subring of B, containing A[x], and which is an

A-module of finite type.

Corollary 3.3. Let B be a ring and let A be a subring. Then the
set of elements of B which are integral over A is a subring of B, called
the integral closure of A in B.

Proof. In effect, if A[x] and A[y] are A-modules of finite type, then
A[x, y] is an A[x]-module of finite type. Since A[x] is an A-module of
finite type, A[x, y] is an A-module of finite type. It follows that x− y
and xy are integral over A.

Example 3.1. The real numbers
√

2 and 3
√

7 are integral over Z.
It is tedious to find an equation of integral dependence for

√
2 + 3

√
7.

The following particular case is of constant interest.

33
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Definition 3.4. An integral domain A is integrally closed if it
is integrally closed in its field of fractions.

Exercise 3.1. a) Show that a principal ideal domain is integrally
closed.

b) Let A be an integral domain, and let S be a multiplicatively
stable subset of A. Show that if A is integrally closed then so is S−1A.

Proposition 3.5. Let B be an integral domain and let A be a sub-
ring of B such that B is integral over A. Then B is a field if and only
if A is field.

Proof. If B is a field and if x is a nonzero element of A, then x−1

satisfies the equation

x−n + a1x
−n+1 + · · ·+ an−1x

−1 = 0.

Multiplying by xn one sees that

x(−a1 − a2x− a3x
2 − · · · − an−1x

n−2 − anx
n−1) = 1.

Conversely, if A is a field and if B is integral over A, every element
x of B satisfies an equation xn + a1x

n−1 + · · ·+ an−1x + an = 0. Given
such an equation of minimal degree, one sees that an 6= 0. Therefore,
an is invertible and xa−1

n (−xn−1 − a1x
n−2 − · · · − an−1) = 1.

Exercise 3.2. Let A be a ring and let B be integral over A. Show
that the map Spec B → Spec A is surjective.

Exercise 3.3. Let B be an A-algebra of finite type, and suppose
that A is contained in B.

a) Suppose that A is local and that B is integral over A. Show that
if q is a prime ideal of B such that q∩A is a maximal ideal of A, then
q is a maximal ideal of B.

b) Show that if B is integral over A, the morphism Spec B → Spec A
is surjective with finite fibres.

4. Algebraic extensions of fields

5. Number fields, order of a number field, rings of algebraic
integers

6. Discrete valuation rings, Dedekind rings

7. The cycle map

8. The map Div (A) → Pic (A)

9. Rational points on a projective scheme over a Dedekind
ring



CHAPTER 3

The compactified Picard group of an order of a
number field

We introduce an invention of Arakelov: the assignment of a hermit-
ian metric at each place at infinity of a number field to an invertible
sheaf.

1. Complex vector spaces of dimension one

A hermitian scalar product on a vector space V over the field C
of complex numbers has is a bilinear map ( , ) : V × V → C such that

(λx, y) = λ(x, y) and (x, y) = (y, x) for each λ in C and for each x and
y in V . Such a scalar product is called positive if (x, x) = ‖x‖2 ≥ 0
for each x and if ‖x‖ = 0 implies x = 0. Positive hermitian scalar
products are automatically nondegenerate.

Example 1.1. Let V be a vector space of dimension one over C.
Specifying a positive hermitian scalar product on V is the same as
specifying the length ‖x‖ 6= 0 of a nonzero element x of V . In effect, if
y and z are in V , one has y = λx, z = µx and therefore (y, z) = λµ‖x‖2.

Proposition 1.1. The set of positive hermitian scalar products on
a vector space V of dimension one over C is a principal homogeneous
space over R×+.

Proof. In effect, if ( , ) and ( , )1 are hermitian scalar products
on V and if x 6= 0, x ∈ V , one has ‖x‖ = ‖x‖1 for some real number λ.
If the hermitian scalar products are positive then λ ∈ R×+.

Remark 1.2. If V1 and V2 are two one dimensional complex vector
spaces endowed with positive non-degenerate hermitian scalar products
( , )1 and ( , )2 respectively, the tensor product V1⊗CV2 is canonically
endowed with the positive hermitian scalar product such that ‖x1 ⊗
x2‖ = ‖x1‖‖x2‖ where xi 6= 0 and xi ∈ Vi for i = 1, 2. The dual V ∨

vector space is endowed with the norm

‖x‖ =
|ϕ(x)|
‖x‖

35
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for each nonzero x in V . By example 1.1 this norm is a positive her-
mitian scalar product.

Exercise 1.1. Let V be a one dimensional vector space over C
endowed with a positive hermitian scalar product. Show that the trace
map V ⊗C V ∨ → C induces by 1.2 a hermitian scalar product.

Definition 1.3. Let V be a one dimensional complex vector space.
A bf hermitian metric on V is a positive hermitian scalar product on
V .

Definition 1.4. Let V be a one dimensional complex vector space
endowed with a positive hermitian metric. The canonical volume
element on V assigns the volume π to the unit disk in V :

Vol{z ∈ V : ‖x‖ ≤ 1} = π.

If W be a one dimensional real vector space endowed with a positive
hermitian metric, then the canonical volume element on W assigns
the length 2 to the unit interval in W :

Vol{z ∈ W : ‖x‖ ≤ 1} = 2.

We note that giving a volume element of V is the same as choosing
a nonzero element of Λ2

RV .

2. Metrized invertible modules of an order of a number field

Let K be a number field. A place of K is a field embedding σ :
K → C. Let n = [K : Q], so that n = r1 +2r2, where r1 the number of
real places, and 2r2 the number of complex places. We let φ be a set of
places at infinity containing r1 real places and r2 complex places, none
of which is a conjugate of any other complex place.

Definition 2.1. Let A be an order of the number field K. An in-
vertible A-module L ∈ Pic(A) (i.e., L is a projective A-module of rank
1) endowed for each place σ in φ with a positive hermitian scalar prod-
uct ( , )σ defined on the complex vector space (L⊗A K)⊗σ C is called
a metrized invertible A-module. If ‖.‖σ is the norm associated with
( , )σ, then (L, ‖.‖σ) denotes this metrized invertible A-module.

The notation (L ⊗A K) ⊗σ C means that K acts on C by the re-
striction of scalars to K defined be the field embedding σ : K → C, so
that if l ∈ L, k ∈ K, and z ∈ C, then

l ⊗ k ⊗ z = l ⊗ 1⊗ σ(k) · z.
Let A be an order of a number field K, let L be a projective rank

one A-module, let φ be as above and let σ ∈ φ be a nonreal place
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of K. We will suppose that the hermitian metric ‖.‖σ defined on the
one-dimensional complex vector space V = (L⊗A K)⊗σC at the place
σ satisfies

‖v‖σ = ‖v‖σ.

for each v ∈ V to make our choice of metrics is independent of our
choice of nonconjugate nonreal places of K.

Example 2.1. (A, (xσ)σ∈φ), where xσ ∈ R+. We will use the nota-
tion

‖1‖σ = xσ,

which defines a hermitian metric on A for σ ∈ φ by the rule

‖a‖σ = xσ · |σ(a)|
for a ∈ A, where |.| is the usual absolute value on C.

Example 2.2. The order A together with the metrics defined at
each place σ ∈ φ by ‖1‖σ = 1 in the notation of the preceding example.
The metrized invertible module (A, 1) is called the trivial metrized
invertible A-module.

One has a notion of isomorphism between metrized invertible mod-
ules.

Definition 2.2. An isometry between two metrized invertible
modules (L1, ‖ ‖1,σ) and (L2, ‖ ‖2,σ) of an order A of a number field is
an A-isomorphism ϕ : L1 → L2 such that ‖ϕ(x)‖2,σ = ‖x‖1,σ for each
x in L1.

Example 2.3. Let u be a unit of A. The metrized invertible mod-
ules (A, 1) and (A, (|σ(u)|)σ) are isometric. An isometry from (A, 1) to
(A, (|σ(u)|)σ) is given by 1 7→ u−1, since

‖u−1 · x‖2,σ = |σ(u)| · |σ(u−1 · x)| = |σ(x)| = ‖x‖1,σ.

Lemma 2.3. Two metrized invertible A-modules (L, ‖ ‖1,σ) and (L, ‖ ‖2,σ)
having the same underlying invertible A-module L are isometric if and
only if there exists a unit u of A such that |σ(u)|‖x‖2.σ = ‖x‖1,σ for
each x in L and each σ in φ.

Proof. In essence, Hom A(L,L) = A and therefore Aut A(L,L) =
A×, hence self-isometries of the A-module L are given by multiplication
by a unit of the order A, since L is projective of rank 1. Hence if u is
a unit of A such that |σ(u)|‖x‖2,σ = ‖x‖1,σ for each x in L and each σ
in φ, then the map ϕ(x) = u · x is an isometry of L.
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3. The compactified Picard Group

Proposition 3.1. The tensor product induces on the set of isom-
etry classes of metric invertible A-modules the structure of a commu-
tative group. This group is called the compactified Picard group of
A and is denoted by Picc(A).

Proof.

Example 3.1. For each infinite place σ ∈ φ, let xσ be a positive
real number. The pair (A, (xσ)σ∈φ) represents an element of Picc(A)
with underlying module A endowed with the hermitian metric ‖ ‖σ at
such that ‖1‖σ = xσ for each σ ∈ φ. Similarly, (A, (1)) represents the
identity element of Picc(A).

Exercise 3.1. Show that the map
(
R×+

)φ → Picc(A)

which to (xσ)σ∈φ associates the element (A, (xσ)σ∈φ) is a group ho-
momorphism.

Exercise 3.2. Show that the map

Picc(A) → Pic(A).

which “forgets places at infinity” is a group homomorphism.

Proposition 3.2 (First fundamental exact sequence). There exists
an exact sequence

0 → µ(A) → A× σ→ (
R×+

)φ → Picc(A) → Pic(A) → 0

where µ(A) is the group of roots of unity of A, and where

σ : A× → (
R×+

)φ

is the map which to u ∈ A× associates the element (|σ(u)|)σ∈φ of
(
R×+

)φ
.

Proof. By example 1.1 the map Picc(A) → Pic(A) is surjective.
Its kernel is the set of “hermitian structures at places at infinity of A”.

By 1.1 and 3.1, this kernel is the image of
(
R×+

)φ
. By an application of

lemma 2.3 one sees that the metrized invertible A-module (A, (xσ)σ∈φ)
is isometric to (A, (1)) if and only if there exists a unit u of A such
that xσ = |σ(u)| for each σ ∈ φ. It remains to prove the following
lemma.

Lemma 3.3. Let K be a number field and let A an order of K. For
each element x of A the following assertions are equivalent:

(i) x is a root of unity
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(ii) for each homomorphism of fields σ : K → C, σ(x) has absolute
value 1.

Moreover, the set µ(A) of roots of unity of A is a finite group.

Proof.

4. The norm of an ideal

Proposition 4.1. Let A be an order of a number field and let a
be a nonzero ideal of A such that A/A is finite. If p1, . . . pr are prime
ideals of A containing a, then

#(A/a) =
r∏

i=1

# (Api
/aApi

)

and

log (#(Api
/aApi

)) = length (Api
/aApi

) log(#(A/pi)).

Definition 4.2. Let A be an order of a number field and let a be a
nonzero ideal of A. The norm of a, denoted by N(a), is the cardinality
of A/a.

Example 4.1. If n is a nonzero integer, N(nZ) = |n|.
Proposition 4.3. The map Div+(A) → N is multiplicative.

If I and J are two ideals in Div+(A) we show

#(A/IJ) = #(A/I) ·#(A/J).

Lemma 4.4. Let B be a ring, and let x be an element of B that is
not a zero divisor. If J is an ideal of B, then there is an exact sequence
of B-modules

0 → B/J → B/xJ → B/xB → 0.

Proof. The desired sequence can be obtained by combining two
simpler exact sequences. First, the kernel of the canonical surjection

B/xJ → B/xB → 0

is xB/xJ . Next, the ideal J is the kernel of the surjection

B → xB/xJ → 0

defined by 1 7→ [x]. This follows from the fact that multiplication by
x is injective: whenever the elements y, z of B satisfy xy = xz, then
y = z since x is not a divisor of zero. Hence B/J is isomorphic to
xB/xJ , which is the kernel of the map B/xJ → B/xB.
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Applying lemma 4.4 to a localized ring Ap, where I and J are
generated by one element, one obtains

#(Ap/IJAp) = #(Ap/IAp)#(Ap/IAp).

Corollary 4.5. The norm map extends to a group homomor-
phism Div(A) → N.

Lemma 4.6 (Second finiteness lemma). Let A be an order of a num-
ber field and let r be a positive integer. Then the set of ideals of A of
norm bounded by r is finite.

Proof. Each element of a finite group is annihilated by the order
of the group. If a is an ideal of A such that N(a) ≤ r, then by Cayley’s
theorem that A/a embeds in the symmetric group Sr on r elements,
r! annihilates A/a, hence r! ∈ a. Therefore, each ideal a of A of
norm at most r contains the ideal r!A, hence by ideal correspondence,
a corresponds to exactly one of the finitely many ideals of the ring
A/r!A.

5. The norm of an element, the product formula

Let x be an element of a number field K, and let d be the degree
of Q[x] over Q. Let

mx : Q[x] → Q[x]

denote multiplication by x on Q[x], considered as a vector space over
Q. Then (−1)d multiplied by the determinant of mx is the constant
coefficient of the minimal polynomial of x. In effect, the characteristic
polynomial is equal to the minimal polynomial in this case.

Proposition 5.1. Let K be a number field and let x be an element
of K. The the determinant of mx, the multiplication by x on K, is a
rational number which satisfies

det mx =
∏

σ:K→C
σ(x)

where the product is taken over all Q-embeddings of K in C.

Proof. Suppose that the element x has degree d over Q. If the
number field K is Q[x], then (1, x, . . . , xd−1) is a basis for K over Q.
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With respect to this basis, mx has the matrix



0 −a0

1 0 −a1

1
. . . −a2

. . . 0
...

1 −ad−1




where the minimal polynomial relation satisfied by x over Q is

xd + ad−1x
d−1 + · · ·+ a0 = 0.

The determinant of multiplication by x is

det mx = (−1)d det




a0

a1 0

a2 1
. . .

...
. . . 0

ad−1 1 0




= (−1)da0,

where the last equality follows from Laplace’s determinant expansion
by expanding the first column of the displayed matrix, noting that
each minor corresponding to aj for 1 ≤ j ≤ d− 1 is zero since it is the
determinant of a matrix whose last column is zero.

If K is a vector space of dimension n over Q[x], then

n[Q[x] : Q] = [K : Q].

Recalling that a basis for K over Q is given by all products αix
j, where

(α1, . . . αn) is a basis for K over Q[x] and where 0 ≤ j ≤ d−1, it follows
that the matrix of mx can be written with n blocks equal to the matrix
of mx restricted to Q[x]. Therefore,

det mx =
∏

σ:Q[x]→C
σ(x)n

and since there are precisely n distinct embeddings of K in C over Q
that extend a given embedding σ : Q[x] → C over Q, the formula of
5.1 holds.

Definition 5.2. Let K be a number field and let x be an element
of K. The norm x is the rational number

N(x) =
∏

σ:K→C
σ(x)
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6. The local definition of the degree of Picc (A)

7. Volume, global definition of degree

8. Sections of a compactified invertible module, the
Riemann-Roch theorem
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