Towards a spoken dialog system capable of acoustic-prosodic entrainment

ANDREAS WEISE

6/12/2017
Terminology

Entrainment:
◦ human tendency to adapt to their interlocutor in conversation
◦ a.k.a. convergence, alignment, adaptation, accommodation,…

Acoustic-prosodic features:
◦ pitch, speech rate, and intensity

Synchrony, convergence, similarity:
◦ [Levitan and Hirschberg, 2011], see next slides
Synchrony
Convergence
Similarity
Entrainment on pitch, rate, and intensity

[Levitan and Hirschberg, 2011]:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Similarity (g)</th>
<th>Similarity (l)</th>
<th>Convergence (g)</th>
<th>Convergence (l)</th>
<th>Synchrony</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensity (mean)</td>
<td>✔ ✔</td>
<td>✔</td>
<td>✔</td>
<td>(✔)</td>
<td>✔</td>
</tr>
<tr>
<td>Intensity (max)</td>
<td>✔ ✔</td>
<td>✔</td>
<td>(✔)</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Pitch (mean)</td>
<td></td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Pitch (max)</td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Rate (syll./sec)</td>
<td>✔</td>
<td>✔</td>
<td>(✔)</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

[Levitan et al., 2012]:
- global similarity for intensity and rate w.r.t. outliers is even greater
Entrainment on phonetics, lexical choices

[Pardo, 2006]:
◦ speakers entrain phonetically

[Brennan and Clark, 1996]:
◦ speakers use common referring expressions
◦ “recency” and “frequency” of use matter

[Niederhoffer and Pennebaker, 2002]:
◦ speakers use similar distributions of function words and other categories (“Linguistic Style Matching”, LSM)
Entrainment on syntax

[Bock, 1986]:
◦ prepositional / double object structures are reused after “priming”

[Branigan et al., 1999]:
◦ syntactic priming effect decays very quickly

[Reitter et al., 2006]:
◦ arbitrary syntactic rules are reused after priming
Perception-behavior link

[Chartrand and Bargh, 1999]:

- people mimic their interlocutor’s mannerisms (shaking leg, rubbing face)
- perceiving a behavior increases the likelihood of engaging in it “perception-behavior link”

→ completely automatic and unconscious

(nonetheless, cognition plays an important role)
Communication accommodation theory

[Giles et al., 1991]:

- entrainment is meant to decrease “interpersonal differences”, disentrainment is meant to increase them
- relative social status and power play and important role
- disentrainment is often “intergroup in nature”

→ partially strategic and semi-conscious
Universality of entrainment

Entrainment has been found in a wide variety of settings:

◦ in Slovak, Spanish, English, Mandarin [Levitan et al., 2015]
◦ face to face and remotely [Lubold and Pon-Barry, 2014]
◦ for both genders [Levitan et al., 2012]
Effects linked to entrainment

[Nenkova et al., 2008]:
◦ similarity of high-frequency word use predicts naturalness

[Reitter and Moore, 2007]:
◦ long-term syntactic entrainment predicts task success, short-term does not

[Lee et al., 2010]:
◦ similarity of pitch and intensity at turn exchanges correlates with positive affect in “seriously and chronically distressed married couples”
How can computer science use entrainment?

1. Evaluate human-human conversation
2. Guide users’ behavior
3. Entrain to user
Why would users entrain to systems?

[Natale, 1975]:
• to increase their intelligibility

[Chartrand and Bargh, 1999]:
• because they cannot help it

[Nass et al., 1994]:
• because they treat computers as “social actors”
Why would users entrain to systems?

[Nass et al., 1994] experiment setup
Users entraining to systems lexically

[Parent and Eskenazi, 2010]:
- Live system: users quickly adopt new vocabulary (especially common words over rare ones)

[Lopes et al., 2011]:
- Choosing non-confusable primes can reduce WER
Users entraining to systems prosodically

[Suzuki and Katagiri, 2007]:

- shorter system response latency elicits shorter user latency; louder system output elicits louder user response
Users entraining to systems prosodically

[Fandrianto and Eskenazi, 2012]:

- quieter, faster system output can reduce shouting and hyperarticulation
Systems entraining to users lexically/synt.

[Hu et al., 2014]:
- system that can entrain lexically and syntactically
- sample utterances rated for friendliness and naturalness
- results:
 - discourse markers → friendlier but less natural
 - referring expressions + tense + syntax → friendlier and more natural
Systems entraining to users prosodically

[Ward and Nakagawa, 2004]:
- corpus of “directory assistance dialogs”
- predict operator’s speaking rate during dictation of numbers from user’s speaking rate and initial reaction time
- correlation of 0.41 between prediction and real value achieved
Systems entraining to users prosodically

[Levitan et al., 2016]:
◦ how to integrate entrainment in an SDS?
◦ do subjects trust entraining avatars more?
◦ results:

<table>
<thead>
<tr>
<th>Language</th>
<th>Avatar gender</th>
<th>Entrainment</th>
<th>Baseline</th>
<th>Entrainment × Advice score</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>Male</td>
<td>Features</td>
<td>Method</td>
<td>+ (p < 0.001)</td>
</tr>
<tr>
<td></td>
<td>Intensity</td>
<td>Speech rate</td>
<td>Absolute</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Speech rate</td>
<td>Relative</td>
<td>Disentrain</td>
<td>- (p < 0.1)</td>
</tr>
<tr>
<td></td>
<td>Speech rate</td>
<td>Relative</td>
<td>Disentrain</td>
<td>- (p < 0.05)</td>
</tr>
<tr>
<td>Spanish</td>
<td>Female</td>
<td>Speech rate</td>
<td>Constant</td>
<td>no effect</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Disentrain</td>
<td>no effect</td>
</tr>
</tbody>
</table>
Open questions / proposed work

1. How to get from analytical model to generative model?
2. How to determine the “best” parameters?
3. How to evaluate parameters on subjects?
Thank you!
Questions?