DEEP LEARNING FOR ACTIVITY RECOGNITION
(A BRIEF AND INCOMPLETE SURVEY)
EXISTING PIPELINE FOR ACTIVITY RECOGNITION

Interest points

Collection of space-time patches

Cleverly engineered descriptors

Histogram of visual words

SVM classifier

(Images/videos from Ivan Laptev)
DEEP LEARNING

• Learning hierarchical data representations that are salient for high-level understanding
• Most often one layer at a time, building more abstract higher-level abstractions by composing lower-level representations
• Typically unsupervised
• Learned representations often used as input to classifiers

Deconvolutional Networks
(Zeiler, Taylor, and Fergus ICCV 2011)
MOTIVATIONS

• Representationally efficient (Bengio 2009)
• Produce hierarchical representations
 - Intuitive (humans organize their ideas hierarchically)
 - Permit non-local generalization
• Biologically motivated
 - Brains use unsupervised learning
 - Brains use distributed representations

Image from Yoshua Bengio
POPULAR DEEP LEARNING ARCHITECTURES

<table>
<thead>
<tr>
<th>Name</th>
<th>Examples</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deep Neural Networks</td>
<td>Rumelhart et al. 1986</td>
<td>S</td>
</tr>
<tr>
<td>Convolutional Networks</td>
<td>LeCun et al. 1998, Le et al. 2010</td>
<td>S</td>
</tr>
<tr>
<td>Stacked Denoising Autoencoders</td>
<td>Vincent et al. 2008</td>
<td>U*</td>
</tr>
<tr>
<td>Hierarchical Sparse Coding</td>
<td>Ranzato et al. 2007, Raina et al. 2007, Cadieu and Olshausen 2009, Yu et al. 2010</td>
<td>U</td>
</tr>
<tr>
<td>(De)Convolutional Sparse Coding</td>
<td>Kavacoglu et al. 2008, Zeiler et al. 2010, Chen et al. 2010, Masci et al. 2010</td>
<td>U</td>
</tr>
<tr>
<td>Deep Boltzmann Machines</td>
<td>Salakutdinov et al. 2009</td>
<td>U*</td>
</tr>
</tbody>
</table>

S - Supervised, U - Unsupervised, U* - Unsupervised but often fine-tuned discriminatively
OUTLINE

3D convolutional neural networks
Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu (2010)

Convolutional gated restricted Boltzmann machines
Graham Taylor, Rob Fergus, Yann LeCun, and Chris Bregler (2010)

Space-time deep belief networks
Bo Chen, Jo-Anne Ting, Ben Marlin, and Nando de Freitas (2010)

Stacked convolutional independent subspace analysis
Quoc Le Will Zou, Serena Yeung, and Andrew Ng (2011)
CONVOLUTIONAL NETWORKS

- Stacking multiple stages of Filter Bank + Non-Linearity + Pooling
- Shared with other approaches (SIFT, GIST, HOG)
- Main difference: Learn the filter banks at every layer
BIOLOGICALLY-INSPIRED

• Low-level features -> mid-level features -> high-level features -> categories
• Representations are increasingly abstract, global and invariant
• Inspired by Hubel & Wiesel (1962)
 - Simple cells detect local features
 - Complex cells pool the outputs of simple cells within a local neighborhood
3D CONVNETS FOR ACTIVITY RECOGNITION
Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu (ICML 2010)

• One approach: treat video frames as still images (LeCun et al. 2005)
• Alternatively, perform 3D convolution so that discriminative features across space and time are captured.

Images from Ji et al. 2010
The 3D CNN architecture consists of 1 hardwired layer, 3 convolutional layers, 2 subsampling layers, and 1 fully connected layer.

Hardwired to extract:
1) grayscale
2) grad-x
3) grad-y
4) flow-x
5) flow-y

H1: 7x7x3 3D convolution

C2: 3x3 subsampling
2x2 convolution
7x6x3 3D convolution

S3: 3x3 subsampling
7x4 convolution

C4: 3x3 convolution
128@1x1 subsampling

S5: 7x4 convolution

C6: 128@1x1

Output layer: 3 classes, total number of trainable parameters is 384.

Detailed Descriptions:
- **H1:** Input: 7@60x40
- **C2:** 7x7x3 3D convolution
- **S3:** 2x2 subsampling
- **C4:** 7x6x3 3D convolution
- **S5:** 3x3 subsampling
- **C6:** 7x4 convolution
- **Output layer:** 3 classes, 384 trainable parameters

Each layer performs different operations to process the input frames, leading to a 128D feature vector capturing motion information. Two fully-connected layers are used to classify actions.
3D CONVNET: DISCUSSION

• Good performance on TRECVID surveillance data (CellToEar, ObjectPut, Pointing)
• Good performance on KTH actions (box, handwave, handclap, jog, run, walk)
• Still a fair amount of engineering: person detection (TRECVID), foreground extraction (KTH), hard-coded first layer

Image from Ji et al. 2010
LEARNING FEATURES FOR VIDEO UNDERSTANDING

• Most work on unsupervised feature extraction has concentrated on static images.
• We propose a model that extracts motion-sensitive features from pairs of images.
• Existing attempts (e.g., Memisevic & Hinton 2007, Cadieu & Olshausen 2009) ignore the pictorial structure of the input.
• Thus limited to modeling small image patches.
GATED RESTRICTED BOLTZMANN MACHINES

- Two views (Memisevic and Hinton 2007):

\[x_i \] \[z_k \] \[y_j \]
CONVOLUTIONAL GRBM
Graham Taylor, Rob Fergus, Yann LeCun, and Chris Bregler (ECCV 2010)

• Like the GRBM, captures third-order interactions
• Shares weights at all locations in an image
• As in a standard RBM, exact inference is efficient
• Inference and reconstruction are performed through convolution operations
VISUALIZING FEATURES THROUGH ANALOGY

Input Output
VISUALIZING FEATURES THROUGH ANALOGY

Feature maps

Input

Output
VISUALIZING FEATURES THROUGH ANALOGY

Feature maps

Input Output
VISUALIZING FEATURES THROUGH ANALOGY

Feature maps

Input
Output

Input
Output
VISUALIZING FEATURES THROUGH ANALOGY

Feature maps

Input

Output

Input

Output

Novel input

Transformation (model)

Ground truth
HUMAN ACTIVITY: KTH ACTIONS DATASET

- We learn 32 feature maps
- 6 are shown here
- KTH contains 25 subjects performing 6 actions under 4 conditions
- Only preprocessing is local contrast normalization
- Motion sensitive features (1,3)
- Edge features (4)
- Segmentation operator (6)

Feature (z_k)

Time

Hand clapping (above); Walking (below)
ACTIVITY RECOGNITION: KTH

- Compared to methods that do not use explicit interest point detection
- State of the art: 92.1% (Laptev et al. 2008) 93.9% (Le et al. 2011)
- Other reported result on 3D convnets uses a different evaluation scheme

<table>
<thead>
<tr>
<th>Prior Art</th>
<th>Acc (%)</th>
<th>Convolutional architectures</th>
<th>Acc. (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOG3D+KM+SVM</td>
<td>85.3</td>
<td>convGRBM+3D-convnet+logistic reg.</td>
<td>88.9</td>
</tr>
<tr>
<td>HOG/HOF+KM+SVM</td>
<td>86.1</td>
<td>convGRBM+3D convnet+MLP</td>
<td>90.0</td>
</tr>
<tr>
<td>HOG+KM+SVM</td>
<td>79.0</td>
<td>3D convnet+3D convnet+logistic reg.</td>
<td>79.4</td>
</tr>
<tr>
<td>HOF+KM+SVM</td>
<td>88.0</td>
<td>3D convnet+3D convnet+MLP</td>
<td>79.5</td>
</tr>
</tbody>
</table>
ACTIVITY RECOGNITION: HOLLYWOOD 2

• 12 classes of human action extracted from 69 movies (20 hours)
• Much more realistic and challenging than KTH (changing scenes, zoom, etc.)
• Performance is evaluated by mean average precision over classes

<table>
<thead>
<tr>
<th>Method</th>
<th>Average Prec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior Art (Wang et al. survey 2009):</td>
<td></td>
</tr>
<tr>
<td>HOG3D+KM+SVM</td>
<td>45.3</td>
</tr>
<tr>
<td>HOG/HOF+KM+SVM</td>
<td>47.4</td>
</tr>
<tr>
<td>HOG+KM+SVM</td>
<td>39.4</td>
</tr>
<tr>
<td>HOF+KM+SVM</td>
<td>45.5</td>
</tr>
<tr>
<td>Our method:</td>
<td></td>
</tr>
<tr>
<td>GRBM+SC+SVM</td>
<td>46.8</td>
</tr>
</tbody>
</table>
SPACE-TIME DEEP BELIEF NETWORKS
Bo Chen, Jo-Anne Ting, Ben Marlin, and Nando de Freitas (NIPS Deep Learning Workshop 2010)

• Two previous approaches we saw used discriminative learning
• We now look at a generative method, opening up more applications
 - e.g. in-painting, denoising
• Another key aspect of this work is demonstrated learned invariance
• Basic module: Convolutional Restricted Boltzmann Machine (Lee et al. 2009)
ST-DBN

- **Key idea:** alternate layers of spatial and temporal Convolutional RBMs
- **Weight sharing across all CRBMs in a layer**
- **Highly overcomplete:** use sparsity on activations of max-pooling units

Images from Chen et al. 2010
ST-DBN

- Key idea: alternate layers of spatial and temporal Convolutional RBMs
- Weight sharing across all CRBMs in a layer
- Highly overcomplete: use sparsity on activations of max-pooling units
MEASURING INVARIANCE

• Measure invariance at each layer for various transformations of the input
• Use measure proposed by Goodfellow et al. (2009)

Invariance scores computed for Spatial Pooling Layer 1 (S1), Spatial Pooling Layer 2 (S2) and Temporal Pooling Layer 1 (T1). Higher is better.

Images from Chen et al. 2010
DENOISING AND RECONSTRUCTION

• Operations not possible with a discriminative approach

Images from Chen et al. 2010
STACKED CONVOLUTIONAL INDEPENDENT SUBSPACE ANALYSIS (ISA)
Quoc Le Will Zou, Serena Yeung, and Andrew Ng (CVPR 2011)

- Use of ISA (right) as a basic module
- Learns features robust to local translation; selective to frequency, rotation and velocity
- Key idea: scale up ISA by applying convolution and stacking

Typical filters learned by ISA when trained on static images (organized in pools - red units above)
SCALING UP: CONVOLUTION AND STACKING

• The network is built by “copying” the learned network and “pasting” it to different parts of the input data.
• Outputs are then treated as the inputs to a new ISA network.
• PCA is used to reduce dimensionality.

Image from Le et al. 2010
LEARNING SPATIO-TEMPORAL FEATURES

- Inputs to the network are blocks of video
- Each block is vectorized and processed by ISA
- Features from Layer 1 and Layer 2 are combined prior to classification
VELOCITY AND ORIENTATION SELECTIVITY

Velocity tuning curves for five neurons in an ISA network trained on Hollywood2 data

Edge velocities (radius) and orientations (angle) to which filters give maximum response
Outermost velocity: 4 pixels per frame
SUMMARY

3D convolutional neural networks
Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu (2010)

Convolutional gated restricted Boltzmann machines
Graham Taylor, Rob Fergus, Yann LeCun, and Chris Bregler (2010)

Space-time deep belief networks
Bo Chen, Jo-Anne Ting, Ben Marlin, and Nando de Freitas (2010)

Stacked convolutional independent subspace analysis
Quoc Le Will Zou, Serena Yeung, and Andrew Ng (2011)
CONCLUSION

• Deep learning methods have already shown promise in the domain of activity recognition
• To this point, they are still neck-and-neck with more engineered systems
• Homogeneous network built by simple, trainable modules
• Future improvements in activity recognition will be driven by efficient and robust learning algorithms that build hierarchical representations (almost) entirely unsupervised
• Are we done with learning invariant representations?

Transforming Autoencoder (Hinton, Krizhevsky, and Wang 2011) Image from Geoff Hinton