Thesis: Topological Equivariant Artist Model

Abstract: A critical aspect of data visualization is that the graphical representation of data is expected to match the properties of the data; this fails when order is not preserved in representations of ordinal data or scale for numerical data. In this work, we propose that the mathematical notions of equivariance and topology formalizes the expectation of matching properties. We developed a model we call the topological artist model (TAM) in which data and graphics can be viewed as sections of fiber bundles. This model allows for (1) decomposing the translation of data fields (variables) into visual channels via an equivariant map on the fibers and (2) a topology-preserving map of the base spaces that translates the dataset connectivity into graphical elements. Furthermore, our model supports an algebraic sum operation such that more complex visualizations can be built from simple ones. We illustrate the application of the model through case studies of a scatter plot, line plot, and heatmap. We show that this model can be implemented with a small prototype.

To demonstrate the practical value of our model, we propose a model driven re-architecture of the artist layer of the Python visualization library Matplotlib. We can show that we can concretely represent the base spaces, make use of programming types for the fiber, and build on Matplotlib's existing infrastructure for the rendering. In addition to providing a way to ensure the library preserves structure, the functional decomposition of the artist in the model could improve modularity, maintainability, and point to ways in which the library provides better support concurrency and interactivity. The thesis will follow through on this proposal to explore how to further develop our model, showing how it can support Matplotlib's current diverse range of data visualizations while providing a better platform for domain-specific visualization library developers.

Committee:

- Professor Michael Grossberg, mentor, City College of New York
- Professor Robert M. Haralick, The Graduate Center
- Professor Lev Manovich, The Graduate Center
- Professor Huy T. Vo, City College of New York

Outside Member:

- Marcus Hanwell, Brookhaven National Lab