Extremely brief history of modern macro

- frustration with keynesian economics on methodological grounds:
 - lucas critique
 - seemingly unstable relationships
 - hard to conduct welfare analysis

- lucas, sargent, wallace, etc. proposed to build new macroeconomic models based on *microeconomic foundations*

- for decades, models remained very simple and stylized
 - toy models, i.e., not quantitatively serious
 - no econometric evaluation
 - markets (mostly) work
 - representative agent

- representative-agent assumption most challenging to drop

- conceptual, theoretical, and computational advances since mid 1990s have now born fruit: *heterogeneous-agent macro*
Heterogeneous-agent macro

- now seems ubiquitous
 - business cycles
 - monetary economics
- ... and less and less difficult to study (numerically)
- it has delivered
 - a framework with higher propensities to consume
 - a framework for analyzing equilibrium inequality (in consumption, wealth, etc.)
- in this piece we evaluate the benchmark model’s quantitative implications of these over time
 - what is/has been the evolution of mpcs?
 - what is/has been the evolution of wealth inequality?
MPCs

simplest possible consumption-saving model, in macroeconomic steady state:

\[
\max_{\{c_t,a_{t+1}\}_{t=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t u(c_t)
\]

s.t.

\[c_t + k_{t+1} = k_t(1 + r - \delta) + w \quad \text{for all } t\]

in a steady state, \(\beta(1 + r - \delta) = 1\), so we obtain, for all \(t\),

\[k_t = k_0 \quad \text{and} \quad c_t = k_0(r - \delta) + w\]

hence MPC out of wealth is \(r - \delta\): super-small!

this is a robust result—so what does the data say?
Average MPCs

Figure A7: Estimates of the Average Marginal Propensity to Consume in the Literature

Notes: The estimates for this paper, labeled “baseline,” are those plotted Figure 2. Ganong and Noel (2017) estimate the MPC at the onset of unemployment using balance sheet data from JPMorgan Chase & Co. See Appendix Table 5 in their paper. Jappelli and Pistaferri (2014) use survey data in Italy to illicit MPCs out of transitory income shocks. Parker et al. (2013) identify the consumption response to the 2008 tax rebates. See Table 2 in their paper. McKee and Verner (2015) use Nielsen panel data to estimate the MPC out of unemployment insurance benefits.

cut/paste from Patterson (2019)
Dispersion

Figure 3: The Distribution of Estimated Marginal Propensities to Consume

Notes: See Appendix Table A7 for the coefficients that underlie this imputation. Negative imputed MPCs are set to 0. Consumption is measured using total consumption, imputed using the method in Blundell et al. (2008). Income is measured using individual labor income. The instrument for income changes is unemployment. The sample includes the set of workers who were employed two years before the current year. The sample in the PSID excludes observations with more than a 400 percent change in food consumption or income over a given two-year period. Lagged income is measured as the average labor marker earnings of the individual in $t - 2$ and $t - 3$. Regression includes year-by-state fixed effects and observations from 1992 to 2013.

more cut/paste from Patterson (2019)
Heterogeneous-agent models

the standard model (huggett-aiyagari)
▶ has idiosyncratic, partially uninsurable shocks
▶ non-trivial wealth distribution
▶ and mpc heterogeneity

high mpcs for “people in need”, i.e., those with
▶ low income realizations
▶ low liquid wealth
▶ so with low wealth (esp. close to borrowing constraint)

in this paper: for a quantitative model of this kind, i.e., one that
▶ matches wealth distribution on average
▶ and over time
ask whether the mpc distribution looks like in the data, how it has evolved, and how it will evolve
Evolution of top wealth inequality in the U.S.

1. evaluate basic model against the wealth data
 ▶ examine a quantitative macro model with sharp implications for the distribution of wealth: can it match the data?
 ▶ its average shape
 ▶ its evolution over time
 ▶ in particular, study the role of a number of wealth-inequality determinants: marginal tax rates, preferences, earnings, and portfolio returns—all varying across households and over time
 ▶ we tie all of the parameters to micro data; does the benchmark framework do an adequate job?

2. examine (the evolution of the) implied mpc distribution
Overview: findings

1. wealth distribution evaluation
 ➤ average shape:
 ➤ yes
 ➤ due to portfolio heterogeneity, very small (or no) role for preference heterogeneity
 ➤ dynamic evolution:
 ➤ yes, except for very, very top
 ➤ lower tax progressivity plays key role for cumulative
 ➤ portfolio heterogeneity and asset prices key for swings
 ➤ earnings variance plays little role
 ➤ predictions for future: slow but significant further widening of inequality

2. mpc distribution
 ➤ MUCH higher on average than in RA model, but perhaps too low, significant heterogeneity
Quantitative model

- extended Aiyagari 1994 framework:
 - log labor income as sum of persistent and transitory component; adjusted at the top to match the observed Pareto tail in labor income
 - transitory component incorporates zero earnings state
 - heterogeneous returns: reduced-form portfolio choice, returns increasing in wealth and have i.i.d. idiosyncratic component
 - stochastic discount factor follows AR(1) process (Krusell-Smith 1998 extended)
 - progressive taxation: use data on federal effective tax rates for 11 income brackets (Piketty & Saez 2007)
 - parsimonious modeling of social safety net: 60% of tax revenues rebated as lump-sum transfers

- time-varying tax system, labor income process, and excess returns

- finding: saving rates (key consumer choice) very robust and unresponsive to all drivers
Return heterogeneity

- total return given asset holdings a_t is

$$r_t + r_t^X(a_t) + \sigma^X(a_t) \eta_t$$

- r_t is endogenous
- $r_t^X(\cdot)$ and $\sigma^X(\cdot)$ are exogenous excess return schedules (mean and st.dev.), taken from the data
- η_t is an i.i.d. standard normal shock
- rationalize as reduced form of portfolio choice model
The consumer’s problem

\[
V_t(x_t, p_t, \beta_t) = \max_{a_{t+1} \geq a} \left\{ u(x_t - a_{t+1}) + \beta_t \mathbb{E} [V_{t+1}(x_{t+1}, p_{t+1}, \beta_{t+1}) | p_t, \beta_t] \right\}
\]

subject to:

\[
x_{t+1} = a_{t+1} + y_{t+1}^{ord} - \tau_{t+1}^{ord} (y_{t+1}^{ord}) + (1 - \tau_{t+1}^{cg}) y_{t+1}^{cg} + T_{t+1}
\]

\[
y_{t+1}^{ord} = (r_{t+1} + r_{t+1}^X(a_{t+1})) a_{t+1} + w_{t+1} l_{t+1} (p_{t+1}, \nu_{t+1})
\]

\[
y_{t+1}^{cg} = \sigma^X(a_{t+1}) \eta_{t+1} a_{t+1}
\]

\(x_t\) cash on hand
\(p_t\) persistent component of earnings process
\(l_{t+1}(\cdot, \cdot)\) efficiency units of labor, moves over time
\(\nu_{t+1}\) transitory earnings shock
\(\tau_{t}^{ord}(\cdot)\) progressive tax on ordinary income, moves over time
\(\tau_{t}^{cg}\) flat capital gains tax
\(T_t\) lump-sum transfer
Whence wealth inequality?

- A dynasty model with complete markets, identical (standard) preferences and returns: generates no long-run wealth inequality beyond initial conditions \Rightarrow inadequate model of wealth inequality
- Incomplete markets added: has predictions, i.e., generates unique distribution in steady state
- Aiyagari (1994) delivers far too little wealth inequality: Gini of wealth becomes that of earnings (in data: \gg)
- The literature has struggled with this (no clear consensus)
 - Finite lives/OG?
 - Preference heterogeneity
 - Returns increase with wealth, entrepreneurs
 - Different earnings processes
- Here:
 - No “tricks”: just feed in micro observations, works well
 - Portfolio heterogeneity important but next step is to explain it!
Nontrivial mechanisms at top of the distribution

- in the data, both earnings and wealth distribution have Pareto shapes at the top
 - again, wealth has a fatter tail (lower Pareto coefficient)
- we calibrate earnings as in Aiyagari but add Pareto distribution at the top—calibrated to data
 - this generates Pareto in wealth but with same coefficient \Rightarrow too thin a tail
- however: stochastic returns or βs generate a Pareto tail in the wealth distribution endogenously!
 - follows from random growth theory (Kesten 1973, see also Gabaix 2009)
 - mechanism has been employed by Benhabib, Bisin and Zhu 2015, Nirei & Aoki 2015, Piketty & Zucman 2015
1. calibrate earnings process, tax rates, return process, social safety net to observables

2. choose randomness in discount factor residually so as to replicate the wealth distribution in the initial steady state (1967)

note: focus on tail coefficient alone misleading—even if, say, the richest 10% can be described exactly by a Pareto distribution, the shape parameter only tells us how wealth is distributed within these 10%, not how much wealth the top 10% control as a fraction of total wealth
Calibration: return process

\[r_t^X(a_t) = \sum_{c \in C} w_c(a_t) (\bar{r}_{c,t} + \tilde{r}_c^X(a_t)) \]
\[(\sigma^X(a_t))^2 = \sum_{c \in C} (w_c(a_t)\tilde{\sigma}_c^X(a_t))^2 \]

- asset classes \(C \): risk-free, public equity, private equity, housing
- \(\bar{r}_{c,t} \): aggregate return on asset class \(c \) (U.S. data), time-varying
- fixed over time, based on Swedish administrative data from Bach, Calvet, Sodini (2016):
 - \(w_c(\cdot) \): portfolio weights
 - \(\tilde{r}_c^X(\cdot) \): within asset class return heterogeneity
 - \(\tilde{\sigma}_c^X(\cdot) \): asset \(c \) idiosyncratic return standard deviation
Schedule of excess returns

Data sources: Bach, Calvet, Sodini (2019); Kartashova (2014); Jorda, Knoll, Kuvshinov, Schularick, Taylor (2019); Case-Shiller.
Results, I: steady state (1967)

<table>
<thead>
<tr>
<th></th>
<th>Top 10%</th>
<th>Top 1%</th>
<th>Top 0.1%</th>
<th>Top 0.01%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>70.8%</td>
<td>27.8%</td>
<td>9.4%</td>
<td>3.1%</td>
</tr>
<tr>
<td>Model</td>
<td>66.6%</td>
<td>23.7%</td>
<td>11.2%</td>
<td>7.2%</td>
</tr>
<tr>
<td>Bottom 50%</td>
<td>4.0%</td>
<td>8.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraction $a < 0$</td>
<td>3.5%</td>
<td>7.3%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- model matches wealth distribution well on its entire domain
- return heterogeneity is key ingredient
- wealth concentration is mitigated by progressive taxation and labor income risk
Observed change 1: decrease in tax progressivity

- federal effective tax rates (Piketty & Saez 2007): income, payroll, corporate and estate taxes
Observed change 2: increase in labor income risk

Observed change 3: increase in top labor income shares

- adjust standard AR(1) in idiosyncratic productivity by imposing a Pareto tail for the top 10% earners: calibrated tail coefficient decreases from 2.8 to 1.9 (updated Piketty & Saez 2003 series)
Observed change 4: return premia

feed in (smoothed) time series of aggregate U.S. asset premia (Kartashova 2014, Case-Shiller index)
Observed change 4: return premia

Feed in (smoothed) time series of aggregate U.S. asset premia (Kartashova 2014, Case-Shiller index)
Observed change 4: return premia

Feed in (smoothed) time series of aggregate U.S. asset premia (Kartashova 2014, Case-Shiller index)
Results, II: historical evolution

top 10% wealth share

- Model
- Data (SZ)
- Data (SZZ)

top 1% wealth share

top 0.1% wealth share

top 0.01% wealth share
Summary of transitional dynamics

- model captures the salient features of the evolution of the U.S. wealth distribution

- these results are robust
 - perfect foresight not critical
 - robust to CES production function with elasticity > 1 and more generally falling labor share

- shortcomings:
 - explosion of wealth concentration at the extreme top (0.01%) not fully captured quantitatively
Decomposition of transitional dynamics

- overall increase in wealth inequality (more than) fully explained by declining tax progressivity
 - primarily due to direct effect on resource distribution and not due to changing savings behavior

- time-varying return premia account for U-shape in wealth inequality

- subtle role of increasing earnings dispersion
 - thickening Pareto tail in labor income contributes slightly positively to wealth inequality
 - increase in overall earnings risk decreases wealth inequality
Capital in the 21st century?

![Graph showing top 1% wealth share over time from 1980 to 2100.](image-url)
MPC distributions

- experiment: spending out of a surprise, one-time transfer of $100

- people respond based on their individual state \((a_t, p_t, \beta_t)\):
 - heterogeneity also from \(\beta_t\)
 - cash-on-hand \(a_t\) now has a return component in it
 - consumption choice made in advance of knowing return shock, however (and it’s iid)

- we first report the average in the population—evaluated at the relevant distribution at time \(t\)...

- and then show some details of the distribution
The averages

average MPC

0.12 0.14 0.16 0.18 0.2

Model

Gini coefficient of wealth distribution

0.78 0.8 0.82 0.84 0.86 0.88 0.9

Model

top 1% wealth share

0.01 0.015 0.02 0.025 0.03 0.035 0.04

Model, data (SZ), data (SZZ)

bottom 50% wealth share

0.2 0.25 0.3 0.35 0.4 0.45

Model, data (SCF)

The heterogeneity
Time change driven by change in distribution of cash-on-hand
Concluding comments

- main findings:
 - account for most long-run inequality w/o \(\beta \) heterogeneity
 - account well for historical evolution due to taxes (trend) and asset-price movements (swings); exception: the very top
 - significantly higher average mpc and high dispersion accounted for but maybe not enough?
 - mpcs significantly higher now than in 1970

- remaining questions:
 - missing rise at top: increased idiosyncratic return volatility, shift toward private equity?
 - why are portfolios heterogeneous (both across and within wealth levels), what drives returns?
 - interactions with aggregate risk
thanks for your attention

wanna see the appendix?
Trends in wealth inequality: recent literature

- **models of Pareto tails**: Piketty and Zucman 2015, Benhabib, Bisin, and Luo 2015, Nirei and Aoki 2015.
Equilibrium: capital market clearing

need to find two equilibrium objects \((K_t, r_t)\) for market clearing:

1. aggregate capital (as usual)
 \[K_t = \int a_t d\Gamma(a_t) \]

2. aggregate capital income (redundant if \(r_t^X(\cdot) = 0\))
 \[(\text{MPK}(K_t) - \delta)K_t = \int \left(r_t + r_t^X(a_t) \right) a_t d\Gamma(a_t) \]
Multiplicative shocks and Pareto tails

- Linear savings rules as wealth grows large (Bewley 1977; Carroll 2012; Benhabib et al. 2015): \(\lim_{x \to \infty} s(x, \beta) = \bar{s}_\beta x \).

- Asset accumulation for large \(x \):

\[
a_{t+1} = s(x_t, \beta) = s(a_t + y_t - T(y_t), \beta) \\
\approx \bar{s}_\beta a_t (1 + (1 - \tau_{\text{max}})r) + \bar{s}_\beta (1 - \tau_{\text{max}})e_t \\
\equiv \hat{s}a_t + z_t,
\]

where \(e_t \) is earnings.

- \(\beta \) and/or \(r \) random \(\rightarrow \hat{s} \) is random.

- With reflecting barrier (borrowing constraint) and/or random earnings, the invariant distribution for wealth has a Pareto tail with coefficient \(\zeta \) solving: \(\mathbb{E}[\hat{s}^\zeta] = 1. \)
Stochastic-β yields stochastic, linear savings decisions
Gives rise to a Pareto tail in the wealth distribution.
Cumulative change in top wealth shares

<table>
<thead>
<tr>
<th></th>
<th>Top 10%</th>
<th>Top 1%</th>
<th>Top 0.1%</th>
<th>Top 0.01%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1967</td>
<td>70.8</td>
<td>27.8</td>
<td>9.4</td>
<td>3.1</td>
</tr>
<tr>
<td>2012</td>
<td>77.2</td>
<td>41.8</td>
<td>22.0</td>
<td>11.2</td>
</tr>
<tr>
<td>Relative Δ</td>
<td>9.0%</td>
<td>50.4%</td>
<td>134.0%</td>
<td>261.3%</td>
</tr>
<tr>
<td>Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1967</td>
<td>73.8</td>
<td>27.4</td>
<td>8.4</td>
<td>3.2</td>
</tr>
<tr>
<td>2012</td>
<td>78.5</td>
<td>36.5</td>
<td>14.4</td>
<td>5.6</td>
</tr>
<tr>
<td>Relative Δ</td>
<td>6.4%</td>
<td>33.2%</td>
<td>72.2%</td>
<td>75.4%</td>
</tr>
<tr>
<td>Fraction explained</td>
<td>70.8%</td>
<td>65.9%</td>
<td>53.8%</td>
<td>28.9%</td>
</tr>
</tbody>
</table>

Wealth shares in %.

... when compared to SCF data

<table>
<thead>
<tr>
<th></th>
<th>Top 10%</th>
<th>Top 1%</th>
<th>Top 0.1%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>67.1</td>
<td>30.1</td>
<td>10.8</td>
</tr>
<tr>
<td>2013</td>
<td>75.3</td>
<td>35.8</td>
<td>13.5</td>
</tr>
<tr>
<td>Relative Δ</td>
<td>12.2%</td>
<td>19.1%</td>
<td>25.4%</td>
</tr>
<tr>
<td>Model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>69.3</td>
<td>24.5</td>
<td>7.4</td>
</tr>
<tr>
<td>2013</td>
<td>78.9</td>
<td>37.1</td>
<td>14.8</td>
</tr>
<tr>
<td>Relative Δ</td>
<td>13.7%</td>
<td>51.5%</td>
<td>100.3%</td>
</tr>
<tr>
<td>Fraction Explained</td>
<td>112.5%</td>
<td>270.1%</td>
<td>394.5%</td>
</tr>
</tbody>
</table>

Wealth shares in %.

Data: SCF, as reported by Saez & Zucman 2016.
Other parts of the distribution

<table>
<thead>
<tr>
<th>Year</th>
<th>Bottom 50%</th>
<th>(\frac{\text{personal wealth}}{Y})</th>
<th>(\frac{\text{nat'l wealth}}{Y})</th>
<th>(\frac{K}{Y})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1967</td>
<td>4.0%</td>
<td>3.6</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>1.1%</td>
<td>4.1</td>
<td>4.6</td>
<td></td>
</tr>
<tr>
<td>Relative Δ</td>
<td>−73%</td>
<td>14%</td>
<td>14%</td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1967</td>
<td>3.0%</td>
<td></td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td>1.4%</td>
<td></td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>Relative Δ</td>
<td>−53%</td>
<td></td>
<td>10%</td>
<td></td>
</tr>
<tr>
<td>Fraction explained</td>
<td>74%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bottom 50% Data: SCF, as reported by Kennickell 2011.
Excess return schedule details

Aggregate Excess Returns in 1967 steady state (over risk-free rate):

- public equity 0.067
- private equity 0.129
- housing 0.037 (incl. imputed rent)

<table>
<thead>
<tr>
<th>fixed portfolio weights</th>
<th>P0-P40</th>
<th>P40-P50</th>
<th>P50-P60</th>
<th>P60-P70</th>
<th>P70-P80</th>
<th>P80-P90</th>
<th>P90-P95</th>
<th>P95-P97.5</th>
<th>P97.5-P99</th>
<th>P99-P99.5</th>
<th>P99.5-P99.9</th>
<th>P99.9-P99.99</th>
<th>Top 0.01%</th>
</tr>
</thead>
<tbody>
<tr>
<td>cash</td>
<td>0.722</td>
<td>0.412</td>
<td>0.248</td>
<td>0.182</td>
<td>0.156</td>
<td>0.134</td>
<td>0.115</td>
<td>0.102</td>
<td>0.090</td>
<td>0.079</td>
<td>0.071</td>
<td>0.051</td>
<td>0.029</td>
</tr>
<tr>
<td>housing</td>
<td>0.162</td>
<td>0.394</td>
<td>0.580</td>
<td>0.662</td>
<td>0.678</td>
<td>0.674</td>
<td>0.658</td>
<td>0.626</td>
<td>0.572</td>
<td>0.482</td>
<td>0.363</td>
<td>0.253</td>
<td>0.155</td>
</tr>
<tr>
<td>public equity</td>
<td>0.113</td>
<td>0.189</td>
<td>0.165</td>
<td>0.147</td>
<td>0.153</td>
<td>0.170</td>
<td>0.189</td>
<td>0.207</td>
<td>0.219</td>
<td>0.232</td>
<td>0.230</td>
<td>0.185</td>
<td>0.179</td>
</tr>
<tr>
<td>private equity</td>
<td>0.002</td>
<td>0.005</td>
<td>0.007</td>
<td>0.009</td>
<td>0.013</td>
<td>0.021</td>
<td>0.038</td>
<td>0.065</td>
<td>0.118</td>
<td>0.207</td>
<td>0.336</td>
<td>0.511</td>
<td>0.637</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>difference from aggregate return on asset class</th>
<th>Cash</th>
<th>Housing</th>
<th>Public Equity</th>
<th>Private Equity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cash</td>
<td>Housing</td>
<td>Public Equity</td>
<td>Private Equity</td>
</tr>
<tr>
<td></td>
<td>Cash</td>
<td>Housing</td>
<td>Public Equity</td>
<td>Private Equity</td>
</tr>
<tr>
<td></td>
<td>Cash</td>
<td>Housing</td>
<td>Public Equity</td>
<td>Private Equity</td>
</tr>
<tr>
<td></td>
<td>Cash</td>
<td>Housing</td>
<td>Public Equity</td>
<td>Private Equity</td>
</tr>
<tr>
<td></td>
<td>Cash</td>
<td>Housing</td>
<td>Public Equity</td>
<td>Private Equity</td>
</tr>
<tr>
<td></td>
<td>Cash</td>
<td>Housing</td>
<td>Public Equity</td>
<td>Private Equity</td>
</tr>
<tr>
<td></td>
<td>Cash</td>
<td>Housing</td>
<td>Public Equity</td>
<td>Private Equity</td>
</tr>
<tr>
<td></td>
<td>Cash</td>
<td>Housing</td>
<td>Public Equity</td>
<td>Private Equity</td>
</tr>
<tr>
<td>mean excess return</td>
<td>0.000</td>
<td>0.011</td>
<td>0.017</td>
<td>0.020</td>
</tr>
<tr>
<td>standard deviation</td>
<td>0.023</td>
<td>0.056</td>
<td>0.081</td>
<td>0.093</td>
</tr>
<tr>
<td>st. dev. (priv.equ. re-scaled)</td>
<td>0.023</td>
<td>0.056</td>
<td>0.081</td>
<td>0.093</td>
</tr>
</tbody>
</table>
Housing details

- financial return on housing as sum of capital gains term and rental income
- we set capital gains term to zero in steady states (in long run 0-0.5% real price growth)
- over transition, use growth in aggregate house price index (Case-Shiller)
- rental income set to 5.33% (average for U.S. from Jorda, Knoll, Kuvshinov, Schularick, Tayler "Rate of Return on Everything")
Public and private equity

Public Equity
- U.S. stock market return

Private Equity
- Kartashova (AER, 2014) documents private equity premium over stock market
- Aggregate time series for U.S. starting in 1960
Capital in the 21st century?

<table>
<thead>
<tr>
<th>Year</th>
<th>Top 10%</th>
<th>Top 1%</th>
<th>Top 0.1%</th>
<th>Top 0.01%</th>
<th>Bottom 50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1967</td>
<td>73.8</td>
<td>27.4</td>
<td>8.4</td>
<td>3.2</td>
<td>3.0</td>
</tr>
<tr>
<td>2017</td>
<td>80.0</td>
<td>39.2</td>
<td>16.2</td>
<td>6.5</td>
<td>1.2</td>
</tr>
<tr>
<td>2100</td>
<td>89.1</td>
<td>61.6</td>
<td>35.2</td>
<td>17.0</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Model predictions for 21st century. Wealth shares in %.

- long-run effects of decrease in tax progressivity
Perfect foresight vs. myopic transition; CES

- **Top 10% Wealth Share**
- **Top 1% Wealth Share**
- **Top 0.1% Wealth Share**
- **Top 0.01% Wealth Share**

Graphs show the evolution of wealth shares over time, comparing benchmark, CES, and myopic transitions.
Tax changes: changes in savings behavior vs. resources

- **Top 10% Wealth Share**
 - Full equilibrium
 - New s(.), fix tax
 - Fix s(.), new tax

- **Top 1% Wealth Share**
 - Full equilibrium
 - New s(.), fix tax
 - Fix s(.), new tax

- **Top 0.1% Wealth Share**
 - Full equilibrium
 - New s(.), fix tax
 - Fix s(.), new tax

- **Top 0.01% Wealth Share**
 - Full equilibrium
 - New s(.), fix tax
 - Fix s(.), new tax
Only changes in top earnings shares I
Only changes in top earnings shares II

capital - net output ratio
- Model (capital)
- Data (national wealth)
- Data (private wealth)

bottom 50% share
- Model
- Data (SCF)
Only changes in taxes I
Only changes in taxes II

capital - net output ratio

- model (capital)
- data (national wealth)
- data (private wealth)

bottom 50% share

- model
- data (SCF)
Only changes in return premia I

- Top 10% wealth share
- Top 1% wealth share
- Top 0.1% wealth share
- Top 0.01% wealth share

Graphs show trends from 1970 to 2010 for different wealth shares:
- Model
- Data (SZ)
- Data (SCF)
Only changes in return premia II

capital - net output ratio

- Model (capital)
- Data (national wealth)
- Data (private wealth)

bottom 50% share

- Model
- Data (SCF)
Dynamics in single-β model I
Dynamics in single-β model II

Capital - net output ratio

- Blue line: model (capital)
- Dashed line: data (national wealth)
- Dotted line: data (private wealth)

Bottom 50% share

- Blue line: model
- Dashed line: data (SCF)