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1 Introduction

Returns on financial markets are risky. Investors in financial markets are uncertain about the future

value of their investment. Modern portfolio theory (Markowitz, 1952) and the Capital Asset Pricing

Model (CAPM) of Sharpe (1964) and Lintner (1965) imply that financial market participants care about

risk and adjust their return expectations accordingly. Translating the latter statement into a standard

dynamic CAPM-type argument (see e.g. Glosten et al., 1993; Bollerslev et al., 2013), expected aggregate

market returns, rt, can be described as

Et(rt+1) = γω2
t , (1)

where γ can be thought of as a risk aversion parameter, which according to risk return trade-off theory

is expected to be > 0, and ω2
t is the local variance of returns with t = 1, 2, . . . , T .

Equation (1) implies that given a measure for ω2
t , returns on the market should be predictable. To

investigate the empirical validity of this implication by a statistical linear regression, the researcher needs

to identify a proxy for the unobservable local return variance or market risk, ω2
t . One approach popu-

lar in the literature is to find a set of state variables that are assumed to carry information about the

unobservable risk, and hence expected returns. Typical predictor variables include the dividend to price

ratio (Campbell and Shiller, 1988a; Fama and French, 1988; Cochrane, 1999), the book to market ratio

(Lewellen, 1999), the price earnings ratio (Campbell and Shiller, 1988b), interest rate spreads (Fama and

French, 1989), and/or the consumption level relative to income and wealth, cay (Lettau and Ludvigson,

2001). A second commonly relied on methodology is to model ω2
t = Vart(rt+1) explicitly, and estimate it’s

dynamics jointly with the predictive regression within the (G)ARCH-M framework (Engle et al., 1987;

Engle and Bollerslev, 1986). The recent availability of high-frequency stock market observations has

opened a third possibility to proxy for risk, by employing nonparametric techniques to construct realized

variance measures (see e.g. Andersen et al., 2001).

Whichever proxy the researcher decides to chose, they all seem to share the common feature of strong

time series persistence. The term spread, measured as the monthly difference between a ten-year bond

yield and a short-term interest rate by Campbell and Vuolteenaho (2004) and Diebold and Li (2006),

has a first-order autocorrelation well above 0.9. The same measure for the price earnings ratio is almost

equal to one. Stambaugh (1999) and Lewellen (2004) discover a similarly high correlation estimate for

the dividend to price ratio. The latter further reports first-order autocorrelation estimates of 0.99 for the

book to market ratio and the earnings price ratio. In the second framework above, the ARCH coefficient

or the sum of the ARCH and the GARCH term are typically found to be close to one (for a summary, see

e.g. Bollerslev et al., 1992). Similarly, the realized variance measures exhibit strong temporal dependence

(see e.g. Bollerslev et al., 2012, and references therein).

0An extensive list of typical predictor variables can be found in Campbell (2000).

1



The apparent persistence in the proxy for ω2
t , i.e. the regressor in a predictive return regression, causes

econometric problems with estimation and inference that mostly arise due to the correlation between

the innovations in the predictor and returns. Firstly, ordinary least squares (OLS) estimation produces

a biased and/or inconsistent slope estimate of the predictive regression. If regressors are assumed I(0)

with autoregressive dynamics, Stambaugh (1986, 1999) describes the small-sample bias in the OLS esti-

mate. Successively, for instance Kothari and Shanken (1997) and Lewellen (2004) derive estimates that

correct for the bias. A large stream of literature describes the regressor dynamics as local to unity (LUR)

processes (see e.g. Campbell and Yogo, 2006, and Jansson and Moreira, 2006), thus violating the I(0)

assumption. In this setup, the OLS slope estimate has an asymptotic second order bias (Phillips and Lee,

2013). It is not obvious how to correct for the presence of this asymptotic bias since the localizing coef-

ficient cannot be consistently estimated (Phillips, 1987). Torous and Valkanov (2000) further show that

if the volatility of the regressor’s innovation scaled by the prediction coefficient relative to the volatility

of the return innovation decreases sufficiently fast as T → ∞, i.e. at rate T−o with o > 1, then the OLS

slope estimate of the predictive regression is even inconsistent.

A related econometric problem concerns the statistical inference on the predictability of returns. Within

a LUR framework the t-statistic corresponding to the null hypothesis (H0) that the regressor contains

no predictive information about returns does not converge to the usual normal asymptotic distribution.

Similarly, if the regressor instead is assumed to be a fractionally integrated process, I(d), Maynard and

Phillips (2001) show that t-statistics have nonstandard limiting distributions. Based on the work of

Campbell and Yogo (2006), Cavanagh et al. (1995), and Stock (1991), who impose the former LUR-type

data generating process (DGP) on the regressor, researchers have relied on confidence intervals computed

using Bonferroni bounds. Predictability tests relying on this methodology are known to be conservative.

A potentially severe drawback of this approach is that the confidence intervals have zero coverage prob-

ability if the regressor is stationary, as has been recently shown by Phillips (2012). IVX filtering due to

Magdalinos and Phillips (2009) (see also Phillips and Lee, 2013; Gonzalo and Pitarakis, 2012) constitutes

an alternative method that resolves the econometric problems of (asymptotic) bias and nonstandard in-

ference in predictive regressions. The underlying idea is to filter the predictor such as to remove its strong

temporal dependence and use the resulting series as an instrument in an instrumental variable (IV) re-

gression. The modified variable addition method of Breitung and Demetrescu (2013), where a redundant

regressor is added to the predictive regression, is a further means to achieve standard statistical inference.

A third issue arising in predictive return regressions with persistent regressors that has received less

attention is the unbalanced regression phenomenon (see e.g. Banerjee et al., 1993). The studies on

predictive regressions with regressor dynamics different from I(0) can be classified into two sets. The

first set assumes a DGP where returns are generated as noise, that is under H0 (see e.g. Maynard and

Phillips, 2001). In this setup returns are I(0), whereas regressors are not, making a predictive regres-

sion unbalanced in theory. The second set of studies (see e.g. Torous and Valkanov (2000)) imposes
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a return DGP under the alternative hypothesis of predictability (H1). In this case returns inherit the

persistence of the regressor, and hence are not I(0). The predictive regression is balanced in theory. Yet,

this implications stands in stark contrast to both, economic and financial models of expected returns as

well as ample empirical evidence that returns are I(0) processes. It follows that predictive regressions

in these frameworks are likely to be unbalanced in practice. The alternative DGP of Phillips and Lee

(2013) that they present in the appendix is one notable exception. Small (or local) deviations from the

null hypothesis are explicitly allowed for while preserving regression balancedness. Another exception is

given in Maynard et al. (2013), who assume a DGP where returns are linearly related to the fractional

difference of the regressor rendering returns I(0).

Our work addresses all three econometric issues, that is bias/consistency, statistical inference, and re-

gression balancedness. We cast our approach in the fractionally integrated modeling framework. There is

substantial evidence that observed proxies for risk can be described as I(d) processes, thus possessing long

memory. For daily and weekly NASDAQ data on the log price dividend ratio, Cuñado et al. (2005) find

an estimate of d ≈ 0.5. Instead of relying on (G)ARCH models to describe ω2
t = Vart(rt+1), Baillie et al.

(1996) suggest using a fractionally integrated GARCH (FIGARCH) model and find that d is larger than

zero but smaller than one for the conditional exchange rate volatility. Similarly, it is well documented that

realized variance measures can be modeled as fractionally integrated processes (see, among others, Ding

et al. (1993), Baillie et al. (1996), Andersen and Bollerslev (1997), Comte and Renault (1998), Bollerslev

et al. (2013)). Motivated by these empirical regularities, we suggest a DGP that linearly relates returns

to a latent I(0) predictor, ω2
t . However, the observed regressor is corrupted by an additive long memory

component. Such a DGP can be justified by the aggregation idea of Granger (1980) or the presence of

structural breaks. Our approach archives balancedness under both hypothesis, the presence as well as the

absence of predictability, yet a linear regression of returns on the observed regressor remains unbalanced.

We show that in this case the OLS estimate in inconsistent, but standard statistical inference based on

the t-statistic can be conducted. To cope with the inconsistency we successively suggest to rely on IV

estimation, where the instruments are I(0) and related to the unobservable risk ω2
t . The IV estimate

is consistent and the corresponding t-statistic is normally distributed. Finally, we discuss methods to

establish the validity and the relevance of the instruments.

In our empirical application we demonstrate that our methodology can be used to evaluate intraday

return predictability using realized and options-implied variances. We identify two instruments that are

closely related to the variance risk premium and the jump component of the stock price process. We find

empirical evidence that the latter two are valid and relevant instruments for the options-implied variance

of the S&P 500. The IV regression of returns on this proxy for risk results in a positive and significant

predictability, providing evidence for a positive risk return trade-off.
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2 DGP and the Unbalanced Predictive Regression

We propose a simple framework that allows for a balanced DGP of the prediction target under the null

and the alternative hypothesis, while retaining the problem of regression unbalancedness of the type

I(0)/I(d) in the empirical prediction model. We assume that the DGP of the true predictor variable, x∗t ,

is I(0). Throughout the remainder of this work, we assume that x∗t is unobserved or latent. Further we

assume that there is a function of the true predictor, xt = f(x∗t ), that is observable. Yet, this variable is

corrupted by a fractionally integrated noise, which implies that the observed xt is I(d). The target, yt,

typically thought of being returns of a risky financial asset, is generated as an I(0) predictive function of

x∗t with prediction coefficient β and level α, such that Et(yt+1) = α + βx∗t . Equations (2)-(5) detail the

assumed DGP.

x∗t = εt (2)

xt = x∗t + zt (3)

yt = α+ βx∗t−1 + ξt (4)

zt = (1− L)−d ηt, (5)

where εt is independently and identically distributed (i.i.d.) with mean zero and variance σ2ε , and zt is

stationary fractionally integrated process with 0 < d < 1/2, such that (1−L)dzt = ηt. L is the usual lag

operator and ηt ∼ i.i.d. (0, σ2η). The variance of zt is σ
2
z = σ2η

Γ(1−2d)

(Γ(1−d))2
. Finally, ξt ∼ i.i.d. (0, σ2ξ ).

Much of the existing work in the field of predictive regressions (see references in Section 1) imposes

the assumption that the true predictor, x∗t , and the observable predictor, xt, are the same or perfectly

correlated. In view of Equation (1) this would imply that market risk, ω2
t , were observable. A very

different model is considered by Ferson et al. (2003) and Deng (2014). They demonstrate the risk of

spurious inference in predictive regressions, where the expected (demeaned) return βx∗t is assumed to

be independent of xt. Note that both setups can be viewed as extremes of our DGP, where the first

scenario arises if σ2η = 0, and the second scenario occurs if β = 0 and/or σ2ε = 0. Instead of imposing

these extreme setups, we consider the predictor in our model to be imperfect. Similarly to Pastor and

Stambaugh (2009) and Binsbergen and Koijen (2010) we assume that the observed variable xt contains

relevant information about the expected return, but it is imperfectly correlated with the latter.

How can we motivate the assumption that observed regressors are corrupted measures of expected re-

turns, or more precisely that the long-memory component is viewed as noise and enters additively to the

true signal? Such a DGP can be justified by the aggregation idea of Granger (1980). Assume that the

observed variable xt in (3) is composed of an aggregation of micro units xi,t. The predictive regression

for returns is typically evaluated for indices, that is an aggregation of several assets, where the predictor

variable would for instance be the dividend to price ratio of an index, the conditional volatility of an

index, etc. All of these processes can be viewed as examples of aggregation. Assume that xi,t follows a
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DGP given by

xi,t = φixi,t−1 + ϑiwt + ζi,t (6)

where wt and ζi,t are independent ∀ i. ζi,t are white noise with variance ς2i . In addition, there is no

feedback in the system, i.e. xi,t does not cause wt. Thus, xi,t can be viewed as i = 1, 2, . . . , N micro units

of a process that are driven by their own past realizations, a common component, wt, and an idiosyncratic

shock, ζi,t.

Further assume that the parameters φ, ϑ, and ς2, are drawn from independent populations, and that

φ ∈ (0, 1) is distributed as1

dF (φ2) =
2

B(p, l)
φ2p−1

(
1− φ2

)l−1
dφ2 p, l > 1, (7)

where B(·, ·) denotes the beta function. If we sum the micro units, xi,t, we obtain

xt =
N∑

i=1

ϑi

∞∑

j=0

φjiwt−j +
N∑

i=1

∞∑

j=0

φji ζi,t−j , (8)

where xt =
∑N

i=1 xi,t. Granger (1980) shows that xt ∼ I(δx), with δx = max(1 − l + δw, 1 − l/2), where

wt ∼ I(δw). Hence, if we assume that l = 2(1−d) and δw = 1−2d, then xt will be integrated of the order

d, i.e. δx = d ∈ (0, 12). Furthermore, xt is generated by two components; the first element is a function

of the common component wt, which will be integrated of the order zero. This can be compared to the

variable x∗t in (3). The second component is a function of the idiosyncratic error terms ζi,t, which will be

integrated of the order d. This second component can be compared to our variable zt in the DGP of xt

in (3). Obviously, in comparison our framework (2)-(5) is slightly less general, as we make the additional

assumption that the innovations of x∗t and zt are i.i.d.

A different way to motivate our DGP for the observable xt is to think of it as the sum of an expected

and an unexpected component. The expected component is correctly centered at the true signal x∗t .

The unexpected component is driven by a process that has (unpredictable) breaks in the level, zt. The

argument that the persistence in observed risk measures may be due to changes in the mean is not new

in the literature. For instance, Lettau and van Nieuwerburgh (2008) provide evidence for such structural

level changes in the dividend to price ratio, the earning to price ratio, and the book to market ratio.

They argue that these patterns could arise as a result of permanent technological innovations that affect

the steady-state growth rate of economic fundamentals.

To demonstrate how unexpected structural level breaks can generate I(d) dynamics in zt, we adopt

the framework of Diebold and Inoue (2001). Let st be a two-state Markov chain, i.e. a random variable

1See Beran et al. (2013), pp. 85-86.
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that can assume values 1 or 2. st is independent of x
∗
t . Define

P =

(

P {st = 1|st−1 = 1} P {st = 1|st−1 = 2}

P {st = 2|st−1 = 1} P {st = 2|st−1 = 2}

)

=

(

P1,1 1− P2,2

1− P1,1 P2,2

)

. (9)

Further assume that ǫt is a vector of size (2× 1), given by

ǫt =

{

(1 0)′ if st = 1

(0 1)′ if st = 2
. (10)

Now let zt = (̺1, ̺2)
′ ǫt, ̺1 6= ̺2. That is zt is a variable that either has level ̺1 or ̺2, depending on the

realization of the Markov chain. We assume that P1,1 = 1 − c1T
−δ1 , P2,2 = 1 − c2T

−δ2 , δ1, δ2 > 0, and

c1, c2 ∈ (0, 1), and w.l.o.g. that δ1 ≥ δ2. If it holds that δ1 < 2δ2 < 2 + δ1, then it follows by Diebold

and Inoue (2001) that zt ∼ I(d), where d = δ2 − 1
2δ1 and d ∈ (0, 12). In addition, if the parameters

satisfy the restriction that ̺1 = −̺2
c1
c2
T δ2−δ1 then the unconditional mean of zt, given by2

E(zt) =
̺1 (1− P2,2) + ̺2 (1− P1,1)

2− P1,1 − P2,2
, (11)

is equal to zero. This is in line with our proposed DGP of zt in (5). As before, our DGP (2)-(5) is

marginally less general. We impose that zt is a fractional noise, whereas the resulting zt from the regime

switching framework above could have more general I(d) dynamics.

To summarize, our proposed DGP (2)-(5) is consistent with the assumption of imperfect predictors.

The imperfection is due to an I(d) noise term that corrupts the true signal. This is in line with either

viewing the observed predictor as a aggregation of micro units, or assuming that there are unexpected

breaks in its level. Our framework further is consistent with the implication of economic/financial models

and the empirical evidence that returns are I(0). The DGP also incorporates the possibility of return

predictability, which is justified by financial models such as (1). Finally, our setup allows for strongly

persistent observed financial risk factors, which is in line with much of the empirical evidence.

Evaluating the predictability of yt, the correct regression to estimate would be to regress yt on x∗t−1.

Yet, x∗t−1 is not observed by the researcher, but xt is not latent. We assume that the researcher runs the

following regression misspecified and unbalanced regression

yt = a+ bxt−1 + et. (12)

This motivates a further feature of our model (2)-(5). It is a stylized empirical fact that the residuals

of (12) and the residuals of a time-series model for the predictor are correlated. Consider for instance

the regression of stock returns on the dividend to price ratio and an autoregressive model of order one,

2See e.g. Hamilton, 1994, p. 684.
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AR(1). The residuals of the former and the latter typically exhibit a strong negative correlation. Our

DGP naturally incorporates this property. To see this, we re-write the DGP of yt in (4) as

yt = α+ βxt−1 + (−βzt−1 + ξt) . (13)

Given our DGP, it follows that the regression residuals of (12) are composed of two elements, that is

et = −βzt−1 + ξt. Thus, et will be naturally correlated with the innovation in xt. More precisely, the

covariance between the two error terms is given by

Cov(et, zt) = −βσ2z
d

1− d
. (14)

The covariance (14) is different from zero, as long as the alternative hypothesis holds, i.e. x∗t−1 predicts

yt with β 6= 0, the long-memory noise term is not constant, i.e. σ2η 6= 0, and d ∈ (0, 12).

3 Ordinary Least Squares Estimation

We describe the implications of regression unbalancedness and endogeneity, where the latter is caused

by the correlation between the innovations in the observed noisy regressor and the target, on the OLS

estimation and inference. Define two matrices X−1 and y of size (T − 1)× 2 and (T − 1)× 1, respectively

by

X−1 ≡

(

1 1 . . . 1

x1 x2 . . . xT−1

)′

(15)

y ≡
(

y2 y3 . . . yT

)′
. (16)

Theorem 1 summarizes our results for both hypotheses, the presence and absence of return predictability

from x∗t−1.

Theorem 1. Let x∗t , xt, and yt be generated by (2), (3), and (4), respectively. Estimate regression (12)

by OLS, resulting in

b̂OLS ≡
(

â, b̂
)′

=
(
X′

−1X−1

)−1 (
X′

−1y
)
. (17)

Let
P
→ denote convergence in probability, and

D
→ convergence in distribution. Then, as T → ∞:

1. If β = 0

â
P
→ α T 1/2b̂

D
→ N

(

0,
σ2ξ

σ2ε + σ2z

)

T−1/2ta
P
→

α

σξ
tb

D
→ N (0, 1) .

ta = â/
√

Var(â) and tb = b̂/

√

Var(b̂) denote the t-statistics associated with â and b̂, respectively, and
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N (·, ·) is the normal distribution. In addition, it holds that s2
P
→ σ2ξ , where s

2 = (T − 3)−1
∑T

t=2 ê
2
t

is the variance of the OLS residuals.

2. If β 6= 0

â
P
→ α b̂

P
→ β

σ2ε
σ2ε + σ2z

T−1/2ta
P
→

α
(

σ2ξ + β2 σ2
εσ

2
z

σ2
ε+σ2

z

)1/2
T−1/2tb

P
→

βσ2ε
(

β2σ2εσ
2
z + σ2ξ (σ

2
ε + σ2z)

)1/2
,

where s2
P
→ σ2ξ + β2 σ2

εσ
2
z

σ2
ε+σ2

z
.

A proof of Theorem 1 can be found in Appendix B. The first part of the theorem summarizes the case in

which the researcher estimates a predictive regression for unrelated variables in an unbalanced regression

framework. In this situation, the OLS slope estimate b̂ correctly converges to zero and to a normal

distribution at the usual rate T−1/2. Figure 1(i) compares the empirical distribution of b̂ from 200,000

simulations with continuous uniformly distributed errors to the theoretical asymptotic distribution from

Theorem 1. Even for small samples of size T = 250, the former closely approximates the latter.

In the second part of Theorem 1 we derive the asymptotic inference for the unbalanced regression frame-

work under the alternative hypothesis that there is predictability from x∗t−1 on yt. In this case, OLS

produces an inconsistent estimate for β. Table 1 summarizes the simulated small sample behavior of the

relative bias b̂/β, with errors drawn from t-distributions. These values range from 0.17 to 0.69, which

implies a substantial bias towards zero of the OLS slope estimate. The table also demonstrates that the

bias is not merely present in small samples, as often the relative bias with T = 1, 000 is larger than or

equal to the corresponding value with T = 250, all else equal. Finally, Table 1 shows that b̂/β is indepen-

dent of σξ and β, but it decreases with increasing d and ση, and increases with increasing σε. This is fully

in line with the theoretical results in Theorem 1. Figure 2(i) plots the empirical average value of b̂ for

different sample sizes, T , from 200,000 simulations of the DGP (2)-(5) with t-distributed errors, proving

graphical support for the analytical results in the theorem. Taken together, this implies that a non-zero

linear relation between the dependent and the independent variable cannot be consistently estimated by

OLS.

The results reveal that the OLS estimate has an asymptotic bias towards zero, which implies that the

researcher would underestimate the implied predictive power from x∗t−1 on yt. This finding stands in con-

trast to the conclusions in Stambaugh (1986, 1999) and Lewellen (2004). Assuming that the covariance

between the prediction-regression residuals and the innovations in the predictor is negative, the latter

conclude that there is a positive finite-sample bias in the OLS prediction estimate stemming from the

endogeneity. Hence, if there is positive predictability the researcher will overestimate its magnitude. The

problem is somewhat more severe in our setup, as b̂ may not merely suffer from a bias, but rather is an
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inconsistent estimate. Given our assumptions, Regression (12) is unbalanced in addition to being endoge-

nous. The dependent variable is I(0), whereas the independent variable exhibits long memory, I(d). The

OLS approach attempts to minimize the sum of squared residuals in the misspecified Regression (12).

This can be achieved by eliminating the memory in et, i.e. by letting b̂ → 0. This finding is consistent

with Maynard and Phillips (2001).

The t-statistic associated with b̂ converges asymptotically to a standard normal limiting distribution

that is free of nuisance parameters under the null hypothesis that β = 0. Small sample simulations

with t-distributed errors in Table 1 support this conclusion. The size of a simple t-test on the param-

eter is always very close to the nominal size of 5%. Figure 1(ii) shows that even for small sample sizes

the t-statistic approximates the asymptotic distribution closely. Under the alternative hypothesis, the

t-statistic tb diverges asymptotically at rate T 1/2. Figure 2(ii) supports this conclusion from Theorem 1,

plotting the empirical average value of T−1/2tb for different sample sizes, T , from 200,000 simulations of

the DGP (2)-(5) with t-distributed errors. The implication of these results is that one can draw valid

statistical inference on the significance of β. A t-test has sufficient asymptotic power to reject the null

hypothesis. In other words, with T sufficiently large the researcher would eventually reject the hypothesis

that the parameter is not equal to zero. The latter result makes clear that even in the unbalanced and

misspecified regression framework considered here the t-statistic can be considered a useful tool to draw

inference on the significance of the predictability of yt from a latent x∗t−1. Table 1 provides small sample

simulation evidence for this conclusion. Drawing DGP errors from a t-distribution, we find that a t-test

generally has good power. Exception from this happen mostly for small sample sizes, T = 250, a small

absolute value of β, and large d. The worst case scenario occurs when σξ = ση = 1.73, σε = 1.13, d = 0.49,

and T = 250. This is not surprising, as in this case the signal-to-noise ratio of the predictor, S ≡ σε/σz,

is equal to 0.1615, and hence rather small. In addition, the relation between yt and x
∗
t−1 is blurred by a

noise term, ξt, that is more volatile than the predictor itself. All else equal, the power increases in |β|, in

σε, and in T ; it decreases in d, σξ, and ση.

The finding that statistical inference in our unbalanced and endogenous regression framework is not

spurious may be somewhat surprising. Generally, these two phenomena when occurring jointly imply a

nonstandard limiting distribution of the t-statistic under the null hypothesis. For fractionally integrated

regressors, this result can be found in Maynard and Phillips (2001); the case of LUR regressors is de-

rived in Cavanagh et al. (1995). Note, however, that given our DGP (2)-(5) the regressor is no longer

endogenous under the assumption that β = 0, that is Cov(et, zt) = 0. From the literature focusing on

the traditional I(0)/I(1) unbalanced regression setup with exogenous regressors and i.i.d. innovations we

know that the t-statistic is well behaved and converges to a standard normal random variable, as shown

in Noriega and Ventosa-Santaulària (2007) and successively in Stewart (2011). Theorem 1 proves that

the same result holds true in our I(0)/I(d) specification.
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A further implication of Theorem 1 is that the level of the conditional mean of yt, α, can be consis-

tently estimated by the OLS estimate â, independently of the true value of β. It’s associated t-statistic

ta diverges at rate T 1/2. Thus, asymptotically the researcher would correctly reject the null hypothesis

that α = 0 when the null hypothesis is false, based on a simple t-test.

To summarize, the t-statistic corresponding to an OLS estimate represents a means to identify the

non-existence of a linear relationship between a random variable and its lagged latent predictor. Yet,

in the present I(0)/I(d) setup with unobserved regressors OLS yields an inconsistent estimate of such a

linear relationship. To cope with the problem of unbalanced regressions, Maynard et al. (2013) suggest to

fractionally filter the regressor; fractional differencing has also been applied by Christensen and Nielsen

(2007). In this paper, we opt for a different solution to cope with the problem for several reasons. Firstly,

the application of the fractional filter to the predictor requires the knowledge of d. As d in not know a

priori, the researcher has to estimate it, which introduces an additional degree of uncertainty. Secondly,

fractionally differencing the regressor is only a useful approach if the assumed DGP for yt follows:

yt = α+ β (1− L)d x̃t−1 + ξt, (18)

with x̃t being a pure fractionally integrated process. We argue that it is difficult to justify a DGP as

(18) from an economic and financial viewpoint. In a traditional I(0)/I(1) framework, i.e. d = 1 in (18),

the filter (1− L)d applied to x̃t−1 would imply that yt is driven by the short-run changes of lagged x̃t,

instead of by its level. In the fractionally integrated setup with d ∈ (0, 12), yt in (18) would be determined

by a “hybrid” of levels and changes in the predictor. This is not in line with many economic-financial

models. Let yt be the continuously compounded return on a risky financial asset, or the logarithmic div-

idend growth. For instance, the Dynamic Gordon Growth Model states that under rational expectations

the logarithmic dividend to price ratio in levels should have predictive ability for future returns and/or

dividend growth. It follows, that the true predictor, x̃t−1, cannot be a fractional difference. Similarly,

assume yt is the change in the foreign exchange spot rate and let the predictor be the forward premium.

The Forward Rate Unbiasedness theory implies that the expected changed in spot rates is linearly related

to the level of the forward premium.

Finally, in our assumed DGP yt is related to the level of a lagged latent x∗t , which is corrupted by a

persistent error. Fractional differencing in this setup cannot help solving the unbalanced regression prob-

lem. Even if d were known, filtering the observed xt−1 by (1− L)d would imply an over-differencing of

the true signal x∗t−1. This would suggest that yt were driven by an anti-persistent predictor.

4 Instrumental Variable Estimation

To alleviate all of the above concerns, we instead propose to estimate the linear relationship by an

instrumental variable (IV) approach. Assume that the researcher has access to a valid and relevant I(0)

10



instrument, i.e. a variable that is strongly correlated with x∗t−1 but not with the fractional noise, zt−1,

and the innovation ξt
3. Theorem 2 summarizes the asymptotic properties of an IV estimation of Equation

12.

Theorem 2. Let x∗t , xt, and yt be generated by (2), (3), and (4), respectively. Assume there exist K

instruments

qk,t = ρkx
∗
t + υk,t, k = 1, 2, . . . ,K, (19)

where υk,t ∼ i.i.d. (0, σ2υk) and ρk 6= 0 ∀k. Further define

Q−1 ≡













1 1 . . . 1

q1,1 q1,2 . . . q1,T−1

q2,1 q2,2 . . . q2,T−1

...
. . .

. . .
...

qK,1 qK,2 . . . qK,T−1













′

. (20)

Estimate regression (12) by IV using qk,t as instruments for xt. The IV estimate is given by

b̂IV ≡
(

â, b̂
)′

=
(

X′
−1Q−1

[
Q′

−1Q−1

]−1
Q′

−1X−1

)−1 (

X′
−1Q−1

[
Q′

−1Q−1

]−1
Q′

−1y
)

. (21)

Then, as T → ∞:

1. If β = 0

â
P
→ α T 1/2b̂

D
→ N




0,

σ2ξ

(

σ2ε
∑K

k=1
ρ2k
σ2
υk

+ 1
)

σ4ε
∑K

k=1
ρ2k
σ2
υk






T−1/2ta
P
→

α

σξ
tb

D
→ N (0, 1) ,

where s2
P
→ σ2ξ .

2. If β 6= 0

â
P
→ α b̂

P
→ β

T−1/2ta
P
→

α
(

σ2ξ + β2σ2z

)1/2
T−1/2tb

P
→ β






σ4ε
∑K

k=1
ρ2k
σ2
υk

(

σ2ξ + β2σ2z

)(

σ2ε
∑K

k=1
ρ2k
σ2
υk

+ 1
)






1/2

,

where s2
P
→ σ2ξ + β2σ2z .

3Notice that by Equation (13) it must hold that an instrument this is neither correlated with zt−1 nor with ξt will by
definition also be unrelated to the error term of the unbalanced regression (12), et.
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Theorem 2 shows that in the absence of predictability, the IV estimate b̂ converges to a normal distribu-

tion with zero mean at the standard rate T−1/2. Figure 3(i) shows that even if T = 250, b̂ approaches

the theoretical asymptotic distribution. More importantly, Theorem 2 demonstrates that IV estimation

results in a consistent estimate for β. Hence, under the maintained assumption that the DGP follows

(2)-(5), the predictive power of a latent variable x∗t−1 on yt can be correctly inferred if the researcher

finds a relevant and valid instrument for the former. Figure 4(i) supports this conclusion, plotting the

average IV estimate b̂ over 200,000 simulations for increasing T . The simulation results in Table 2 further

show that the relative bias, b̂/β, is very close to one even for small to moderate sample sizes. Across the

set of chosen parameter values, the relative bias is bound between 1 and 1.05, when simulated errors are

drawn from standard normal distributions. Finally, α can be consistently estimated by IV, as Theorem

2 proves. The proof of Theorem 2 can be found in Appendix C.

Theorem 2 further implies that the statistical significance of β can be correctly inferred from a sim-

ple t-test. Under the null hypothesis that H0 : β = 0 the t-statistic of the IV estimate b̂, tb, converges

to a standard normal distribution, as the simulations in Figure 3(ii) confirm. Table 2 summarizes the

small sample behavior of a t-test. Overall, the size of the test is close to the nominal level of 5%, but on

average the test seems somewhat undersized. Nevertheless, the size approaches 5% as T increases, as |ρ|

and hence |Corr(qk,t, x
∗
t )| increases, and as σε increases, all else equal. We find the lowest nominal size of

approximately 3% for the scenario where σξ = ση = συ = 1.73, σε = 1.13, d = 0.49, and T = 250. As

mentioned in Section 3, this is to be expected as in this case S is small.

Contrasting the size of the t-test on the significance of β of the IV estimator in Table 2 with the

corresponding size for the OLS estimator in Table 1, we can thus observe that the overall size of the

former is smaller than the latter. This does not come as a surprise, as the IV estimator is generally less

efficient than the OLS. Standard errors of the former are comparably slightly larger, leading to a small

underrejection of the null hypothesis. It should be noted that, in our setup, there seems to be no risk

of detecting predictability too often. This stands in contrast to the usual worry in the literature that

predictability tests with persistent regressors may be (heavily) oversized, as pointed out by Elliott and

Stock (1994) and Campbell and Yogo (2006) among others, or may even lead to spurious conclusions

(Ferson et al., 2003).

Assuming that the variables follow our proposed DGP (2)-(5), we conclude that size is not an issue

in our setup. Yet, the power of the OLS t-test on the significance of β in the previous section may be

insufficient, especially when T is small and d is large. OLS hence implies some risk of the researcher

not detecting predictability when it is present. Estimation by IV also alleviates this concern. The power

of the t-test is very close to 100% across the scenarios that we consider in the simulations in Table 2.

Asymptotically, tb diverges at rate T 1/2 under H1 : β 6= 0 as shown in Theorem 2; Figure 4(ii) depicts

the convergence behavior of the statistic.
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4.1 Instrument Relevance

As is generally the case, the instrument may not be irrelevant or too weak. To see this, let qk,t = υk,t in

Theorem 2 and estimate Regression (12) by IV using qk,t as instruments. Then, as T → ∞, b̂ = Op(1).

To demonstrate that choosing an irrelevant instrument can lead to very undesirable properties of the

IV estimation, we simulate an instrument as in (19) with ρ1 = 0. Table 3 shows the the size, power, and

relative bias of the resulting IV estimator and the corresponding significance test, when errors are drawn

from continuous uniform distributions. The size of a standard t-test on the significance of the prediction

coefficient is approximately zero. Similarly the power of the test is very low, ranging between 0.31% and

14.87%. The lack of power is is not a small sample problem, as our simulations show that the power

uniformly decreases as T increases, suggesting that asympotitcally the probability to reject is zero. This

implies that the researcher will tend to conclude that there is no predictability, independent of whether

it is present or absent.

The low size and power properties signify that the t-statistic, tb, is too small in absolute value if the

instrument is irrelevant. This may be the result of a too small value of |b̂| and/or of a too large volatility

of the estimate,

√

Var(b̂). Table 3 summarizes the relative bias, b̂/β, which deviates wildly from the

reference point of 1. IV estimation with an irrelavant instrument may lead to overestimation, underes-

timation, or even estimation with the incorrect sign. The relative bias covers a wide range, from -24.52

to 14.72, and the bias is independent of T . Hence, we cannot conclude that |b̂| is too small in absolute

value. The low size and power of t-test is therefore mostly a result of a very high variance of the estimator.

To conclude, estimating (12) by IV with an irrelevant instrument leads to an inconsistent and ineffi-

cient estimator. To avoid such an outcome, we suggest a simple testing procedure. Assume that the

researcher has identified a candidate instrument. Recall that the instrument follows the DGP given in

(19), qk,t = ρkx
∗
t + υk,t. As x∗t is unobserved the researcher cannot simply regress the instrument on x∗t

to conduct inference on the value of ρk and thus on the instrument relevance. Instead, qk,t can be regress

on the observed xt by OLS, however. By Theorem 1 it holds that the slope coefficient of this regression

is an inconsistent estimate of ρk, yet valid statistical inference using a t-test can be carried out. Thus,

relying on a simple OLS t-test the researcher can infer whether the instrument is statistically irrelevant.

4.2 Instrument Validity

Besides being relevant, the instruments qk,t−1 further need to be valid. For an instrument to be valid,

it may not be correlated with the residuals of the IV regression of Regression (12), et. To summarize

the consequences of IV estimation with an invalid instrument in finite samples, we simulate two types

of invalid instruments. The first instrument is correlated with zt−1, i.e. with the fractionally integrated

noise. We draw a random series µt−1 from a standard normal distribution with zero mean and variance
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σ2µ, and construct the instrument as in (19) with

υk,t−1 = µt−1 + κkzt−1. (22)

This invalid instrument is correlated with et and it is integrated of the order d, I(d). Henceforth, we refer

to such instruments as invalid of type 1. Table 4 shows size and power properties, as well as the relative

bias of an IV estimation of (12) with this instrument. The power of a t-test is close to 100% across the

considered scenarios. Even when d is large, the researcher will still reject an incorrect null hypothesis in

at least 98.60% of the cases. Similarly, the test is correctly sized at 5%. Thus, even when the instrument

is invalid and I(d), statistical inference on β using the t-test from the IV estimation can be conducted.

Yet, the IV estimate b̂ is biased towards zero. As this bias does not disapeear with increasing T , we

conclude that b̂ is inconsistent. The simluated relative bias, b̂/β, ranges from 0.38 to 0.77. Thus, using

such an invalid instrument with innovations given by (22) leads to the same outcome as when estimating

Regression (12) by simple OLS.

In practice, it is fairly straightforward for the researcher to avoid invalid instruments of type 1, i.e.

that are correlated with zt−1 as in (22). As they will be integrated of the order d, a simple statistical

test for the presence of a fractional root can be relied on. Examples are the Lagrange-Multiplier tests

of Robinson (1994) or Tanaka (1999), which test for an integration order d under the null hypothesis

against the alternative of an integration order smaller (or larger) than d. The fractional Dickey-Fuller

test of Dolado et al. (2002) is another possibility that is easy to implement.

We construct a second type of instrument in Table 4, which is correlated with ξt, and hence corre-

lated with et and integrated of the order zero, I(0). We call this second form of instrument invalidity

type 2. The innovations of this instrument qk,t−1 are simulated as

υk,t−1 = µt−1 + κkξt. (23)

Table 4 shows that choosing such an instrument can have very severe consequences. The size of a t-test

on the significance of the prediction coefficient is approximately 100%. The power of the test is also close

to 100% in most instances, yet in extreme cases it may drop down to as low as 2.12%. The researcher

would therefore be tempted to reach the exact opposite conclusion than what it should be. If there is

no predictability, one will always erroneously conclude that there is. Conversely, if there is very strong

predictability, i.e. β is bounded far away from zero, we may fail to reject β = 0. The latter is especially

true if d is large, T is small, σξ is small, ση is big.

If the invalid instrument has innovations given by (23), the estimation of (12) by IV further is strongly

inconsistent. The relative bias in Table 4, b̂/β, shows that when β = −2, b̂ is negative but it strongly

underestimates the magnitude. When β = 3, b̂ is positive yet it overestimates the magnitude. Finally,
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when β = 04, the estimate b̂ is positive. We conclude that b̂ in this case has a significant positive bias; as

it does not decrease as T increases, the estimate in inconsistent.

In practice, using an invalid instrument of type 2 should be avoided at all costs. A common approach to

test for the validity of an instrument is to rely on Sargan’s J test (Sargan, 1958). Corollary 1 summarizes

the asymptotic behavior of the J test for our DGP.

Corollary 1. Let x∗t , xt, and yt be generated by (2), (3), and (4), respectively. Assume there exist K

instruments, generated by (19). Estimate the following second-stage regression by OLS

ê = Q−1̟ + v, (24)

where ê are the regression residuals from regression (12) by IV. ̟ is a (K + 1) OLS coefficient vector

and v is a vector of innovations. Compute the uncentered R2 of Regression (24) as R2
u = 1− v̂′v̂

ê′ê
. Define

a test statistic for the validity of the instruments as

J ≡ TR2
u. (25)

Then, as T → ∞:

J
D
→ χ2

(K−1).

A proof of Corollary 1 can be found in Appendix D. The corollary shows that even though the true

predictor, x∗t−1 is not observable, we can still test whether qk,t is a (in)valid instrument of type 2 for

the former. The statistical inference on the J -statistic can be based on the standard χ2 distribution.

To evaluate the finite sample properties of the test, we conduct Monte Carlo experiments with 200,000

repetitions. Table 5 shows that we consider many different parameter combinations with K = 2, draw-

ing innovations from t-distributions. The simulations are set in a challenging scenario, where we let

Corr([q1,t−1, q2,t−1]
′, x∗t−1) = [0.85, 0.1]′. Thus, there is only one strongly relevant instrument, whereas

the second instrument is weakly relevant at best.

The simulation results in Table 5 suggest that the J -test is correctly sized at a nominal level of 5%.

The test is marginally oversized, with a maximal size of 5.9% across all scenarios, only when S is small

and β 6= 0. The power of the test is fair for small values of T = 250, and is generally good or very good

when we let T increase to 1,000. Accross all scenarios the power is substantially larger when β = 0 than

when β 6= 0. This finding is not surprising, as êt → ξt when β = 0, and hence there is a very clear relation

between qk,t−1 with innovations as in (23) and êt. By the same logic, if β 6= 0 then êt → −βzt−1+ ξt, and

hence the signal ξt becomes more prominent in êt as d decreases, ση decreases, and/or σξ increases, thus

increasing the power of the test. Finally, the power of the test decreases as we let Corr([q1,t−1, q2,t−1]
′, ξt)

4These estimates are not reported here to save space. The results are available from the authors upon request.
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decrease from [0.5, −0.6]′ to [−0.4, 0.3]′.

We conclude that there is almost no risk of overrejecting instrument validity in finite samples when

the instrument is valid of type 2. However, there is a small chance to erroneously conclude that an

invalid instrument is valid, due to insufficient power in (very) small samples. To safeguard against this,

we recommend that the researcher chose a conservative confidence level, for instance 10%.

5 Predicting Returns on the S&P 500

To exemplify that the suggested approach from the previous sections can help alleviate some of the

concerns in empirical asset pricing, we predict daily returns, rt+1, t = 1, 2, . . . , T , on the S&P 500 stock

market index. We consider the data period from February 2, 2000 until April 25, 2013, resulting in

T = 3325 observations. We assume that risk or uncertainty in the financial market, i.e. ω2
t in (1),

can be proxied by observable variance measures. Our first risk proxy is the realized return variance,

RVRL,t, computed on the basis of intradaily observations spaced into 5-minute intervals. Under certain

regularity conditions, RVRL,t converges to the daily quadratic variation of returns, as shown by Andersen

et al. (2001), Barndorff-Nielsen and Shephard (2002), and Meddahi (2002). Our second measure is the

bipower variation, BVRL,t, of Barndorff-Nielsen and Shephard (2004), which converges to the integrated

variance of returns. The three series, rt, RVRL,t, and BVRL,t, are obtained from the Oxford-Man Institute’s

“Realised Library”5. As a final proxy for ω2
t , we consider the volatility index, V IXCBOE,t. It is a measure

for the risk-neutral expectation of return volatility over the next month, and as such can be viewed as

the options-implied volatility. We obtain the series V IXCBOE,t, which is traded on the Chicago Board

of Options Exchange (CBOE), from the WRDS database. We transform the data series into monthly

variance units by

vix2t =
30

365
V IX2

CBOE,t. (26)

Whereas vix2t is related to the return variation over a month, the raw series RVRL,t and BVRL,t measure

daily variation. To align the three measures, we modify the latter two as follows.

rvt =
22∑

i=1



RVRL,t−i+1 × 1002 +

{[

ln
P (open)

t−i+1

P (close)

t−i

]

× 100

}2


 (27)

bvt =
22∑

i=1



BVRL,t−i+1 × 1002 +

{[

ln
P (open)

t−i+1

P (close)

t−i

]

× 100

}2


 . (28)

It is well known that the three variance series exhibit strongly dependent dynamics that closely resemble

fractionally integrated processes (see e.g. Bollerslev et al., 2013, and references therein). At the same time,

asset returns, especially at the daily frequency level, are known to exhibit almost no serial correlation.

5Available at http://realized.oxford-man.ox.ac.uk/.
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This renders a regression of the following type unbalanced.

rt+1 = a+ bxt + et+1, (29)

where for the remainder of this section xt is either rvt, bvt, or vix
2
t . To avoid any overlap between daily

returns, rt+1, and the realized variance and bipower variation measures, we define returns as intraday

net returns6

rt =

[
P (close)

t − P (open)

t

P (open)

t

]

× 100. (30)

To provide evidence that Regression (29) is indeed unbalanced for our data set, we estimate the respective

fractional integration order, di, of the four series, rvt, bvt, vix
2
t , and rt, jointly.

It is common to rely on semiparametric techniques for the estimation of di, as they permit the re-

searcher to assess the long-memory behavior of the process close to frequency zero, while allowing for

some unparameterized dynamics at intermediate or high frequencies. There are two commonly used

classes of semiparametric estimators; the log-periodogram estimators introduced by Geweke and Porter-

Hudak (1983) and the local Whittle estimators, originally developed by Künsch (1987). We rely on

the latter class, since it is more robust and efficient, as pointed out by Henry and Zaffaroni (2002).

The exact local Whittle (EW) due to Shimotsu and Phillips (2005) is particularly attractive, since it

is consistent and asymptotically normally distributed for any value of di. Nielsen and Shimotsu (2007)

derive a multivariate version of the EW, which we apply for the joint estimation of drv, dbv, dvix2 , and dr
7.

Table 6 summarizes our results. The realized variance and the bipower variation are integrated of the

order I(0.35) and I(0.34), respectively. At a 5% significance level, we reject that di = 0 and di = 1

for both series, yet we fail to reject that di = 0.5. The point estimate for the memory of the volatility

index, vix2t , is somewhat higher, d̂vix2 = 0.44. According to the t-test of Nielsen and Shimotsu (2007)

for the equality of di, we cannot reject that the three variance series are integrated of the same order,

however. Intraday returns in turn are integrated of the approximate order zero, and we fail to reject

di = 0. The t-tests for H0 : di = dj indicate the we reject the hypothesis that variance series and returns

are integrated of the same order, which makes Regression (29) unbalanced. For further evidence of the

apparently distinct dynamics of the three variance series and stock returns, see also Figure 5, where we

plot the autocorrelations of the four processes. Whereas shocks to daily returns die out immediately,

shocks to rvt, bvt, and vix
2
t are highly persistent. As opposed to the stationary return process, it takes

many lags to revert the effect of a shock to the variance.

6All estimation results in this section remain virtually unchanged if we rely on daily close-to-close returns, instead. Here
we only report the results for intraday returns; outcomes with close-to-close returns are available from the authors upon
request.

7The consistency and asymptotic properties of the EW estimator rely on the knowledge of the true mean of the data
generating process. As this value is not known in practical applications, we modify the EW to account for this uncertainty,
relying on the two-step feasible EW estimator of Shimotsu (2010).
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One shortcoming of the approach above is that the EW is not explicitly robust to the presence of additive

perturbations, which are present in three variance processes, rvt, bvt, and vix2t , under the maintained

assumption that xt follows a short-memory signal plus a long-memory noise process as (3). To robustify

our approach, we further rely on the trivariate version of the modified EW estimator of Sun and Phillips

(2004) (TEW). Let Xt ≡ [rvt, bvt, vix
2
t ]
′. The underlying assumption of the TEW estimation approach

in our setup is that the spectral density of Xt at frequency λ is given by

fX(λ) ∼ DτD′ + ιH as λ→ 0+, (31)

where D = (diag[λ−drv , λ−dbv , λ−dvix2 ]), and τ is a diagonal matrix with elements fηi(0). Hence, we

assume that the fractional-noise series, zt,i, are uncorrelated across the three variance measures. H is a

(3 × 3) matrix of ones; thus we impose that the signal x∗t = ω2
t is the same for rvt, bvt, and vix2t , and

has variance 2πι. We estimate the respective fractional order of integration of the three series jointly

with the ratio τ/ι, by concentrated TEW-likelihood. We find that d̂rv =0.36, d̂bv =0.46, d̂vix2 =0.33.

The exact asymptotic properties of the TEW are unknown, yet Sun and Phillips (2004) conjecture that

the distribution is normal and that standard errors are bound between [0.11,0.15]. The estimates for di

are thus different from zero and statistically indistinguishable from the non-robust estimates in Table 6.

From the point estimates for τ/ι, we can compute the implied signal-to-noise ratio; we find Srv =50.12,

Sbv =24.28, and Svix2 =15.44. This suggests that the variation in the signal is strong relative to the

volatility in the fractionally integrated noise for all three variance series8.

Next we investigate the consequences of ignoring the regression unbalancedness and instead estimat-

ing the prediction regression by OLS. Table 7 outlines the results. If we predict daily returns on the S&P

500 by rvt the prediction coefficient is very close to zero and it is statistically insignificant. Similarly, if

we evaluate the unbalanced regression (29) with xt = bvt we obtain a very small and insignificant slope

estimate. Yet, when we use the vix2t series to predict returns, we find a positive b̂ = 0.15 × 10−2 and it

is significantly different from zero. The estimated coefficient is very small, however, and we know from

Theorem 1 that the estimate is inconsistent.

To alleviate the problems associated with the unbalanced OLS regression, we define a set of instruments

for IV estimation. To that end, note that there is substantial evidence that there is a linear long-run

relation between rvt and vix
2
t that is I(0). For instance, Bandi and Perron (2006) and Christensen and

Nielsen (2006) find evidence of fractional cointegration between the two series. Furthermore, if the coin-

tegrating vector is equal to [−1, 1]′, then the resulting cointegrating series corresponds to the monthly

version of the variance risk premium, vrpt, as defined by Bollerslev et al. (2009). The latter argue that

vrpt may be viewed as bet on pure volatility; as such it is reasonable to expect that the measure is

8We expect the confidence bands for the estimates for S to be very wide, and hence their values have to be interpreted
with care and rather viewed as indicative. The reason is that the likelihood function for the TEW becomes flat in (τ/ι)−1

when T → ∞, as shown by Hurvich et al. (2005).
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closely liked to the local variance in (1), ω2
t = x∗t , that we are aiming at proxying with the instrument.

Bollerslev et al. (2009) and Bollerslev et al. (2013) also present evidence that vrpt can predict aggregate

market returns, which is further motivation for considering the measure to be a relevant instrument in

our framework.

Besides the cointegrating relation between rvt and vix2t , we expect that there is a long-run relation

between rvt and bvt, as both series measure the monthly integrated variance of stock returns. Following

the arguments in Barndorff-Nielsen and Shephard (2004), Andersen et al. (2007), and Huang and Tauchen

(2005), the cointegrating relation between rvt and bvt represents the contribution of price jumps to the

variance, if the cointgerating vector is equal to [1, −1]′. For instance, Andersen et al. (2007) find that the

jump component exhibits a much lower degree of persistence than the two series rvt and bvt, providing

evidence for a fractional cointegration relation. Jumps are closely related to stock market volatility; Corsi

et al. (2010) and Andersen et al. (2007), among others, find that the former is an important predictor of

the latter. Therefore we anticipate jumps to be a relevant instrument for ω2
t = x∗t .

We investigate the potential cointegration relation by a restricted version of the co-fractional vector

autoregressive model of Johansen (2008, 2009) and Johansen and Nielsen (2012), given by

∆dXt = ϕ
[

θ′
(

1−∆d
)

Xt

]

+
n∑

i=1

Γi∆
d
(

1−∆d
)i
Xt + ut. (32)

We rely on model (32) because it allows us to identify a cointegration relation between the variables,

while at the same time explicitly accounting for possible dynamics at higher frequencies, which may be

present due to the overlapping nature of rvt and bvt
9. Given the identification problems of the model (see,

Carlini and Santucci de Magistris, 2013), we initially fix the cointegration rank r = 2 and estimate (32)

by restricted maximum likelihood. Subsequently, we test for cointegration. For d̂ = 0.38 (SE(d̂)=0.10)

and n = 3 we find the cointegrating matrix estimate

θ̂′ =

(

1 −1.1938 0

−1.0111 0 1

)

. (33)

Johansen (2008) states that model (32) has a solution and θ′Xt ∼ I(0) if the following conditions are

satisfied. Firstly, r needs to be smaller than 3. The value of the likelihood-ratio (LR) statistic of Johansen

and Nielsen (2012) that provides a test for H0 : r ≤ 2 against r ≤ 3 is equal to 3.7709; thus we fail to

reject the null hypothesis. Secondly, it must hold that |ϕ′
⊥ (I3×3 −

∑n
i=1 Γi) θ⊥| 6= 0. In our estimation

this value is equal to -1.46, i.e. different from zero. Thirdly, the roots c of the characteristic polynomial

|(1− c)I3×3 −ϕθ′c− (1− c)
∑n

i=1 Γic
i| = 0 must be either equal to one or /∈ a complex disk Cd. Figure 6

9The Matlab code for the maximum-likelihood estimation of the parameters of model (32) has been provided by Nielsen
and Morin (2012).
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shows that all roots fulfill this final condition. We conclude that we have identified two instruments

qt =

(

q1,t

q2,t

)

= θ̂′Xt (34)

that are integrated of the order zero. Hence, qt are not invalid instruments of type 1 as described in

Section 4.2, that is qt is not correlated with the I(d) noise term, zt.

If we estimate a restricted version of our benchmark co-fractional model, where θ(2,1) = −1 and θ(1,2) =

−1, we obtain a LR statistic of 6.6354. This implies that we reject the restriction. Whereas the second

cointegrating relation, q2,t, is essentially the variance risk premium of Bollerslev et al. (2009), q1,t differs

slightly from the pure jump contribution, i.e. the squared jump sizes over one month. More precisely,

q1,t ≈
∑22

i=1

∑Nt−i+1

j=1 ψ2
t−i+1,j−0.19bvt, where ψt,j is the size of the jth jump on day t, and Nt denotes the

total number of jumps in a day. Noting that |rvt−bvt| ≥ |q1,t| for more than 95% of the total observations

in our sample, q1,t thus reduces the absolute value of the jump component by 0.19bvt, that is setting it

closer to zero. This can be viewed as a crude approximation to the standard approach of only considering

significant jumps (see, for instance, Tauchen and Zhou, 2011 and Andersen et al., 2007). Relying on the

method outlined Section 4.1, we now investigate whether the two instruments are relevant. Regressing

q1,t on rvt, bvt, and vix2t , respectively, we find the corresponding t-statistics, tρ̂1 , to be equal to -6.54,

-12.31, and -3.33. The jump instrument is a relevant instrument for the unobserved stationary component

of all three variance series. Carrying out the same analysis for q2,t, we find the respective values for tρ̂2 to

be equal to -11.42, -11.98, 14.11, suggesting that also the variance risk premium instrument is strongly

relevant.

Table 7 lists the outcomes of the IV estimations of Regression (29), using q1,t and q2,t from (34) as instru-

ments. If we predict intraday returns with rvt, we find a negative prediction coefficient, b̂ = −0.13×10−1,

that is statistically significant. This finding stands in contrast to the OLS estimation result, where we

discover that rvt does not contain an I(0) component that significantly predicts returns. The solution to

this puzzle can be found in the the J -test for instrument validity of type 2. The J -statistic is equal to

13.73, which is well above the χ2
(1) critical value at any commonly considered confidence level. Hence, the

jump instrument and the variance risk premium instrument for the unobserved stationary component in

rvt are invalid. From the simulations in Table 4 we know that if the instrument(s) are invalid of type 2,

the researcher is likely to find predictability even though there is none. This explains why we erroneously

conclude that there is significant return predictability in the series rvt from the IV estimation. Further-

more, the slope estimate b̂ is known to have an asymptotic upward bias. To conclude, rvt does not carry

predictive information for daily returns on the S&P 500. For the bvt series, the results in Table 7 are

qualitatively the same.

Finally, we consider vix2t as a predictor. The OLS estimation results imply that there is a positive
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predictability from vix2t on rt+1, but the prediction-coefficient estimate of 0.15× 10−2 is asymptotically

biased towards zero. If we instead predict rt+1 by vix2t using the two identified instruments and IV

estimation, we obtain a statistically significant slope estimate of b̂ = 0.13× 10−1. This estimate is almost

nine times larger than the corresponding inconsistent OLS estimate. The J -statistic is equal to 1.41. As

this value is smaller than the corresponding χ2
(1) critical value, even if we consider a significance level of

20%, we conclude that jump and the variance risk premium are valid instruments in this case. Hence, we

find strong evidence that there is an unobservable I(0) component, x∗t = ω2
t , contained in the vix2t series

that positively predicts future daily stock returns, but that is corrupted by a fractionally integrated noise

term, zt. The risk-return trade-off thus is positive.

6 Concluding remarks

This paper presents a novel DGP that accounts for many theoretical and empirical features of the re-

turn prediction literature, such as for instance persistence in the observed predictors and the stationary

noise-type behavior of returns. Assuming that the practitioner estimates a misspecified and unbalanced

predictive regression, where the regressors are imperfect measures of the true predictor variable, we show

that OLS estimation of the predictive regression results in inconsistent estimates for the prediction coeffi-

cient. Nevertheless, standard statistical inference based on t-tests remains valid. To avoid the problem of

obtaining an inconsistent estimate for the prediction coefficient, we propose an IV estimation method. If

the practitioner has access to a valid and relevant I(0) instrument, IV estimation results in a consistent es-

timate for the predictive coefficient and standard statistical inference on predictability can be carried out.

Our paper is closely related to the work on predictive regressions with IVX filtering of Magdalinos

and Phillips (2009) and Phillips and Lee (2013), where the predictor is assumed to have LUR dynam-

ics. Similarly to our approach, the underlying idea is to find an instrument that is less persistent that

the regressor and use it in an IV regression. They show that consistency of the prediction estimate

and standard statistical inference can be achieved in this framework10, which is in line with our conclu-

sions. From a theoretical viewpoint, Phillips and Lee (2013) also explicitely addresses the issue of an

unbalanced regression and their extended framework presented in the appendix permits local deviations

from H0 while retaining balancedness. Important differences to our work are that our setup allows for

unrestricted deviations for the null hypothesis of no predictability. Our theoretical predictive equation

remains balanced for any value of the prediction coefficient. Secondly, whereas Phillips and Lee (2013)

assume that the true predictor is observed, we view regressors as imperfect. Lastly, the instrument in

Magdalinos and Phillips (2009) and Phillips and Lee (2013) is easy to find, as it is a filtered version

of the predictor itself, and it is relevant and valid by definition. In our setup, the practitioner has to

find an instrument and subsequently test for instrument relevance and validity. To that end, we discuss

methodologies to investigate instrument relevance and validity.

10Note that the framework of Phillips and Lee (2013) permits multivariate regressors and discusses multi-period predictions,
which we do not consider in this work.
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Finally, we apply the methods outlined in this paper to the investigation of the predictabilility of daily

returns on the S&P 500 stock market. Relying on an analysis of fractional cointegration, we provide one

suggestion of how an I(0) instrument can be identified. We find evidence of significant return predictabil-

ity and a positive risk-return trade-off, using the suggested IV approach.
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Appendix

A Useful Lemma

Lemma 1 will prove useful for the derivations of the results in this paper.

Lemma 1. Let at and bt be two independent processes satisfying at ∼ i.i.d. (0, σ2a) and bt ∼ I(d), with

variance σ2b and 0 < d < 1
2 for t = 1, 2, · · · , T . Then ct = btat is a stationary martingale difference

sequence (m.d.s.) with finite variance σ2c = σ2bσ
2
a.

Proof: The relevant moments of ct are given by

E(ct) = E(btat) = E(bt)E(at) = 0 ∀t ∈ {1, . . . , T}

E(c2t ) = E(b2ta
2
t ) = σ2

bσ
2
a ∀t ∈ {1, . . . , T}

E(ctcs) = E(btatbsas) = E(btbs)E(atas) = 0 ∀t 6= s; t, s ∈ {1, . . . , T}

E(ct|ct−1, ct−2, . . . , c1) = E(atbt|at−1bt−1, at−2bt−2, . . . , a1b1)

= E (E [atbt|at−1, at−2, . . . , a1, bt, bt−1, bt−2, . . . , b1] |at−1bt−1, at−2bt−2, . . . , a1b1)

= E (btE [at|at−1, at−2, . . . , a1, bt, bt−1, bt−2, . . . , b1] |at−1bt−1, at−2bt−2, . . . , a1b1)

= E (bt × 0|at−1bt−1, at−2bt−2, . . . , a1b1) = 0 ∀t ∈ {2, . . . , T}.

The equalities are a natural consequence of the assumption of independence between bt and at and the

fact that at is i.i.d. It follows that the memory structure of an I(d) process disappears when multiplied

by an i.i.d. process. This is the main driver of the results in Theorem 2 and Corollary 1. As ct = atbt

is also ergodic, the Ergodic Stationary Martingale Difference Central Limit Theorem (ESMD-CLT) of

Billingsley (1961) applies; the order of convergence of
∑T

t=1 ct is Op(T
1/2).

B Proof of Theorem 1

B.1 If β 6= 0:

The OLS estimator of regression model (12) is given by b̂OLS =
(
X′

−1X−1

)−1 (
X′

−1y
)
, where

(
X′

−1X−1

)−1
=

1

T
∑
x2t−1 − (

∑
xt−1)

2

( ∑
x2t−1 −

∑
xt−1

−
∑
xt−1 T

)

,

X′
−1y =

( ∑
yt

∑
ytxt−1

)

,

with xt−1 and yt generated by Equations (3) and (4), respectively, and b̂OLS =
(

â, b̂
)′
. X−1 and y are

defined as in Equations (15) and (16), and all sums run from t = 1 to T unless stated otherwise11. It

11Strictly speaking, T should be replaced by T − 1 in all equations, as we lose one observation by lagging xt; similarly, all
sums should run from t = 2 to T . Asymptotically, this will make no difference, however.
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follows that

â =

∑
x2t−1

∑
yt −

∑
xt−1

∑
ytxt−1

T
∑
x2t−1 − (

∑
xt−1)

2 , (B1)

b̂ =
T
∑
ytxt−1 −

∑
yt
∑
xt−1

T
∑
x2t−1 − (

∑
xt−1)

2 . (B2)

To derive the asymptotic behavior of the estimators (B1) and (B2), along with the associated t-statistics,

it is necessary to obtain the limit expression of the sums that appear in the equations. They are sum-

marized in Table B1, along with their respective convergence rates. All of the convergence rates (see the

underbraced expressions) can be found in Tsay and Chung (2000) except for the normalization ratio of
∑
εt−1zt−1 and

∑
ξtzt−1, which follow from Lemma 1.

∑
xt−1 =

∑

εt−1
︸ ︷︷ ︸

Op(T 1/2)

+
∑

zt−1
︸ ︷︷ ︸

Op(Td+1/2)
∑
x2t−1 =

∑

ε2t−1
︸ ︷︷ ︸

Op(T )

+
∑

z2t−1
︸ ︷︷ ︸

Op(T )

+2
∑

εt−1zt−1
︸ ︷︷ ︸

Op(T 1/2)
∑
yt = αT + β

∑
εt−1 +

∑

ξt
︸ ︷︷ ︸

Op(T 1/2)
∑
y2t = α2T + β2

∑
ε2t−1 +

∑

ξ2t
︸ ︷︷ ︸

Op(T )

+2αβ
∑
εt−1 + 2α

∑
ξt + 2β

∑

ξtεt−1
︸ ︷︷ ︸

Op(T 1/2)
∑
ytxt−1 = α

∑
εt−1 + α

∑
zt−1 + β

∑
ε2t−1 + β

∑
εt−1zt−1 +

∑
ξtεt−1 +

∑

ξtzt−1
︸ ︷︷ ︸

Op(T 1/2)

Table B1: Expressions for sums in Theorem 1.

For ease of exposition, denote â(n) and â(d) the numerator and denominator of â, respectively, and sub-

stitute the expressions from Table B1.

â(n) =
(∑

x2t−1

)(∑

yt

)

−
(∑

xt−1

)(∑

ytxt−1

)

= αT
∑

ε2t−1 + αT
∑

z2t−1
︸ ︷︷ ︸

Op(T 2)

−β
∑

ε2t−1

∑

zt−1
︸ ︷︷ ︸

Op(Td+3/2)

−α
(∑

zt−1

)2

︸ ︷︷ ︸

Op(T 2d+1)

(B3)

+
∑

ξt
∑

ε2t−1 + β
∑

εt−1

∑

z2t−1 +
∑

ξt
∑

z2t−1 + 2αT
∑

εt−1zt−1
︸ ︷︷ ︸

Op(T 3/2)

− 2α
∑

εt−1

∑

zt−1 − β
∑

zt−1

∑

εt−1zt−1 −
∑

zt−1

∑

ξtεt−1 −
∑

zt−1

∑

ξtzt−1
︸ ︷︷ ︸

Op(Td+1)

+β
∑

εt−1zt−1

∑

εt−1 + 2
∑

εt−1zt−1

∑

ξt −
∑

εt−1

∑

ξtεt−1 −
∑

εt−1

∑

ξtzt−1 − α
(∑

εt−1

)2

︸ ︷︷ ︸

Op(T )
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â(d) = T
∑

x2t−1 −
(∑

xt−1

)2

= T
∑

ε2t−1 + T
∑

z2t−1
︸ ︷︷ ︸

Op(T 2)

+2T
∑

εt−1zt−1
︸ ︷︷ ︸

Op(T 3/2)

−
(∑

zt−1

)2

︸ ︷︷ ︸

Op(T 2d+1)

− 2
∑

εt−1

∑

zt−1
︸ ︷︷ ︸

Op(Td+1)

−
(∑

εt−1

)2

︸ ︷︷ ︸

Op(T )

(B4)

It follows that the expression for â simplifies to

â =
αT
(∑

ε2t−1 +
∑
z2t−1

)
+Op(T

d+3/2)

T
(∑

ε2t−1 +
∑
z2t−1

)
+Op(T 3/2)

.

Dividing both, the numerator and the denominator, by T 2 and letting T → ∞, we obtain

plim
T→∞

â = α, (B5)

since the remaining terms collapse. Now let b̂(n) and b̂(d) be the numerator and denominator of b̂,

respectively. Then

b̂(n) = T
∑

ytxt−1 −
(∑

yt

)(∑

xt−1

)

= βT
∑

ε2t−1
︸ ︷︷ ︸

Op(T 2)

+βT
∑

εt−1zt−1 + T
∑

ξtεt−1 + T
∑

ξtzt−1
︸ ︷︷ ︸

Op(T 3/2)

−β
∑

εt−1

∑

zt−1 −
∑

ξt
∑

zt−1
︸ ︷︷ ︸

Op(Td+1)

−β
(∑

εt−1

)2

−
∑

ξt
∑

εt−1

︸ ︷︷ ︸

Op(T )

. (B6)

Noting that b̂(d) = â(d), we obtain

b̂ =
βT
∑
ε2t−1 +Op(T

3/2)

T
(∑

ε2t−1 +
∑
z2t−1

)
+Op(T 3/2)

.

Dividing b̂(n) and b̂(d) by T 2, in the limit we have

plim
T→∞

b̂ = β
σ2ε

σ2ε + σ2z
. (B7)

Next, we demonstrate the derivation of the asymptotic expression for the variance of the regression

residuals, s2.

s2 =

(
y −X−1b̂OLS

)′ (
y −X−1b̂OLS

)

T − 2
(B8)

=
T
∑
y2t
∑
x2t−1 −

∑
y2t (
∑
xt−1)

2 − T (
∑
ytxt−1)

2 − 2
∑
xt−1

∑
ytxt−1

∑
yt +

∑
x2t−1 (

∑
yt)

2

(T − 2)
(

T
∑
x2t−1 − (

∑
xt−1)

2
) .

25



Substituting the expressions from Table B1, we obtain the following solutions for the numerator, s2(n),

and denominator, s2(d), of s2.

s2(n) = −T
∑

ε2t−1

∑

ξ2t − T
∑

z2t−1

∑

ξ2t − Tβ2
∑

ε2t−1

∑

z2t−1
︸ ︷︷ ︸

Op(T 3)

+op(T
3) (B9)

s2(d) = −T 2
∑

ε2t−1 − T 2
∑

z2t−1
︸ ︷︷ ︸

Op(T 3)

+op(T
3). (B10)

Thus, we obtain the following.

s2 =
1
T 2

(∑
ξ2t
∑
ε2t−1 +

∑
ξ2t
∑
z2t−1 + β2

∑
z2t−1

∑
ε2t−1

)
+ op(1)

1
T

(∑
ε2t−1 +

∑
z2t−1

)
+ op(1)

.

When T → ∞

plim
T→∞

s2 = σ2ξ + β2
σ2εσ

2
z

σ2ε + σ2z
(B11)

Finally, we can write the t−statistics as

ta = â
[

s2
(
X′

−1X−1

)−1

(1,1)

]−1/2
,

tb = b̂
[

s2
(
X′

−1X−1

)−1

(2,2)

]−1/2
,

Following the same procedure as above, we find

plim
T→∞

ta = plim
T→∞

â×

(

plim
T→∞

s2
)−1/2

× plim
T→∞

((
X′

−1X−1

)−1

(11)

)−1/2

= α

(

σ2
ξ + β2 σ2

εσ
2
z

σ2
ε + σ2

z

)−1/2
(

plim
T→∞

∑
x2t−1

T
∑
x2t−1 − (

∑
xt−1)

2

)−1/2

= α

(

σ2
ξ + β2 σ2

εσ
2
z

σ2
ε + σ2

z

)−1/2




plim
T→∞

(∑
ε2t−1 +

∑
z2t−1 +Op(T

1/2)
)

plim
T→∞

(
T
∑
ε2t−1 + T

∑
z2t−1 +Op(T 3/2)

)





−1/2

= α

(

σ2
ξ + β2 σ2

εσ
2
z

σ2
ε + σ2

z

)−1/2



σ2
ε + σ2

z

plim
T→∞

(∑
ε2t−1 +

∑
z2t−1 +Op(T 1/2)

)





−1/2

plim
T→∞

T−1/2ta = α

(

σ2
ξ + β2 σ2

εσ
2
z

σ2
ε + σ2

z

)−1/2

, (B12)
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and

plim
T→∞

tb = plim
T→∞

b̂×

(

plim
T→∞

s2
)−1/2

× plim
T→∞

((
X′

−1X−1

)−1

(22)

)−1/2

=

(

β
σ2
ε

σ2
ε + σ2

z

)(

σ2
ξ + β2 σ2

εσ
2
z

σ2
ε + σ2

z

)−1/2
(

plim
T→∞

T

T
∑
x2t−1 − (

∑
xt−1)

2

)−1/2

=

(

β
σ2
ε

σ2
ε + σ2

z

)(

σ2
ξ + β2 σ2

εσ
2
z

σ2
ε + σ2

z

)−1/2



1

plim
T→∞

(∑
ε2t−1 +

∑
z2t−1 +Op(T 1/2)

)





−1/2

plim
T→∞

T−1/2tb =

(

β2σ4
ε

σ2
ξ (σ

2
ε + σ2

z) + β2σ2
εσ

2
z

)1/2

. (B13)

B.2 If β = 0:

Note that the asymptotic behavior for â does not change since the terms with the largest order of

divergence in (B3) and (B4) do not involve β. Similarly, the asymptotic behavior of b̂(d) remains the

same, yet the limit of b̂(n) is different if β = 0. We find that

b̂ =
T (
∑
ξtεt−1 +

∑
ξtzt−1) + op(T

3/2)

T
(∑

ε2t−1 +
∑
z2t−1

)
+Op(T 3/2)

=
1

T 1/2
1

T 1/2 (
∑
ξtεt−1 +

∑
ξtzt−1) + op(T

−1/2)
1
T

(∑
ε2t−1 +

∑
z2t−1

)
+Op(T−1/2)

T 1/2b̂ =
1

T 1/2 (
∑
ξt (εt−1 + zt−1)) + op(1)

1
T

(∑
ε2t−1 +

∑
z2t−1

)
+Op(T−1/2)

(B14)

The denominator of (B14) converges in probability to σ2ε+σ
2
z . The numerator involves the sum of the ran-

dom variable ξt (εt−1 + zt−1), which is an ergodic stationary m.d.s. with mean zero and constant variance

σ2ξ
(
σ2ε + σ2z

)
. Thus, by the ESMD-CLT the numerator converges in distribution to N

(

0, σ2ξ
(
σ2ε + σ2z

))

.

It follows that

T 1/2b̂
D
→ N

(

0,
σ2ξ

σ2ε + σ2z

)

. (B15)

The asymptotic behavior of the numerator of s2, i.e. s2(n) changes if β = 0, whereas for s2(d) there is no

change. As a result, we get

plim
T→∞

s2 = plim
T→∞

1
T 2

(∑
ξ2t
∑
ε2t−1 +

∑
ξ2t
∑
z2t−1

)
+ op(1)

1
T

(∑
ε2t−1 +

∑
z2t−1

)
+ op(1)

= σ2ξ .
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Plugging this result into the expression for ta in (B12), it follows that plim
T→∞

T−1/2ta = α
σξ
. Finally, we

find the asymptotic behavior of tb in the case where β = 0. We re-write (B13) as

tb = b̂×
(

s2
(
X′

−1X−1

)−1

(22)

)−1/2

= b̂×

(

s2
1

(∑
ε2t−1 +

∑
z2t−1 +Op(T 1/2)

)

)−1/2

= T 1/2b̂×

(

s2
1

(
1
T

∑
ε2t−1 +

∑
z2t−1 +Op(T−1/2)

)

)−1/2

(B16)

The first term in (B16), T 1/2b̂ converges in distribution to a normal by (B15). The second term converges

in probability to

(
σ2
ξ

σ2
ε+σ2

z

)−1/2

. Hence,

tb
D
→ N (0, 1) . (B17)

C Proof of Theorem 2

This section presents proofs for the asymptotic results in Theorem 2. The IV estimator of regression

model (12) is given by

b̂IV ≡
(

â, b̂
)′

=
(

X′
−1Q−1

[
Q′

−1Q−1

]−1
Q′

−1X−1

)−1 (

X′
−1Q−1

[
Q′

−1Q−1

]−1
Q′

−1y
)

,

whereQ−1, X
′
−1, and y are defined in Equations (20), (15), and (16), respectively. Introduce the following

auxiliary notation

Q′
−1X−1 =













T
∑
xt−1

∑
q1,t−1

∑
xt−1q1,t−1

∑
q2,t−1

∑
xt−1q2,t−1

...
...

∑
qK,t−1

∑
xt−1qK,t−1













≡






T
1×1

x
1×1

q
K×1

r
K×1






Q′
−1y =













∑
yt

∑
ytq1,t−1

∑
ytq2,t−1

...
∑
ytqK,t−1













≡






y
1×1

t
K×1






Q′
−1Q−1 =













T
∑
q1,t−1

∑
q2,t−1 . . .

∑
qK,t−1

∑
q1,t−1

∑
q21,t−1

∑
q1,t−1q2,t−1 . . .

∑
q1,t−1qK,t−1

∑
q2,t−1

∑
q2,t−1q1,t−1

∑
q22,t−1 . . .

∑
q2,t−1qK,t−1

...
...

...
. . .

...
∑
qK,t−1

∑
qK,t−1q1,t−1

∑
qK,t−1q2,t−1 . . .

∑
q2K,t−1













≡






T
1×1

q′
1×K

q
K×1

B
K×K
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It follows that

(Q′
−1Q−1)

−1 =
1

c

(

1 −q′B−1

−B−1q cB−1 +B−1qq′B−1

)

,

where c
1×1

≡ T − q′B−1q. Furthermore,

X′
−1Q−1(Q

′
−1Q−1)

−1 =
1

c

(

c 0

x − r′B−1q −xq′B−1 + cr′B−1 + r′B−1qq′B−1

)

,

and

X′
−1Q−1(Q

′
−1Q−1)

−1Q′
−1X−1 =

1

c

(

T c xc

xc
(

x − r′B−1q
) (

x − r′B−1q
)′
+ cr′B−1r

)

X′
−1Q−1(Q

′
−1Q−1)

−1Q′
−1y =

1

c

(

yc

yx − yr′B−1q+
(
−xq′B−1 + cr′B−1 + r′B−1qq′B−1

)
t

)

.

Now, note that the following relation must hold true
(
X′

−1Q−1(Q
′
−1Q−1)

−1Q′
−1X−1

)−1
=

c

T c (x − r′B−1q) (x − r′B−1q)′ + T c2r′B−1r− x 2c2

( (
x − r′B−1q

) (
x − r′B−1q

)′
+ cr′B−1r −xc

−xc T c

)

.

(C1)

Thus, the IV estimate can be re-written as follows.

b̂IV =
1

T c (x − r′B−1q) (x − r′B−1q)′ + T c2r′B−1r− x 2c2
× (C2)

( (
xq′ − cr′ − r′B−1qq′) cB−1

(
−yr+ x t

)

−
(

xq′ − cr′ − r′B−1qq′)T cB−1t+ (xq′ − Tr′) ycB−1q

)

(C3)

As for the proof of Theorem 1 in Section B, it is necessary to obtain the limit expression of the sums

that appear in the definitions of the IV estimates and the associated t-ratios. Most of these expressions

are summarized summarized in Table B1. The remaining sums can be found in Table C2.

From the expressions in Tables B1 and C2 it follows that all elements of B are of the order Op(T ).

Hence, it must hold that B−1 is of order Op(T
−1). Furthermore, the elements of all vectors have the

same convergence rates; i.e. q is Op(T
1/2), r is Op(T ), and t is Op(T ) if β 6= 0 and Op(T

1/2) otherwise.

Finally, we note the following orders for the scalars. x is Op(T
d+1/2), y is Op(T ), and c is Op(T ).

Let â(n) denote the numerator of â, given by (C3). Note that independently of the true value of β,

we find the following dominant terms

â(n) = c2yr′B−1r
︸ ︷︷ ︸

Op(T 4)

+op(T
4).
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∑
qk,t−1 = ρk

∑
εt−1 +

∑

υk,t−1
︸ ︷︷ ︸

Op(T 1/2)
∑
q2k,t−1 = ρ2k

∑

ε2t−1
︸ ︷︷ ︸

Op(T )

+
∑

υ2k,t−1
︸ ︷︷ ︸

Op(T )

+2 ρk
∑

εt−1υk,t−1
︸ ︷︷ ︸

Op(T 1/2)
∑
ytqk,t−1 = αρk

∑
εt−1 + α

∑
υk,t−1 + βρk

∑
ε2t−1 + β

∑
εt−1υk,t−1 + ρk

∑

ξtεt−1
︸ ︷︷ ︸

Op(T 1/2)

+
∑

ξtυk,t−1
︸ ︷︷ ︸

Op(T 1/2)
∑
xt−1qk,t−1 = ρk

∑
ε2t−1 +

∑
εt−1υk,t−1 + ρk

∑
εt−1zt−1 +

∑

zt−1υk,t−1
︸ ︷︷ ︸

Op(T 1/2)
∑
qk,t−1qj,t−1 = ρkρj

∑
ε2t−1 + ρk

∑
εt−1υj,t−1 + ρj

∑
εt−1υk,t−1 +

∑

υk,t−1υj,t−1
︸ ︷︷ ︸

Op(T 1/2)

Table C2: Expressions for sums in Theorem 2 with j 6= k; k = 1, · · · ,K.

Similarly, the denominator of â given in (C2) is

â(d) = T c2r′B−1r
︸ ︷︷ ︸

Op(T 4)

+op(T
4).

It follows that in the limit we can write

plim
T→∞

â = plim
T→∞

1
T 4 c2yr′B−1r+ op(1)
1
T 3 c2r′B−1r+ op(1)

= plim
T→∞

y

T
=
αT

T
= α (C4)

Now, note that the denominator of b̂ is identical to the denominator of â. Hence b̂(d) = â(d). For the

limiting behavior of the numerator of b̂, we need to distinguish between β = 0 and β 6= 0. First, define

additional auxiliary variables. Let

p ≡










ρ1

ρ2
...

ρK










u ≡










∑
υ1,t−1

∑
υ2,t−1

...
∑
υK,t−1










v ≡










∑
υ21,t−1

∑
υ22,t−1

...
∑
υ2K,t−1










w ≡










∑
ξtυ1,t−1

∑
ξtυ2,t−1

...
∑
ξtυK,t−1










.

C.1 Case 1 - If β 6= 0

Following the convergence rates in the tables, we find

b̂(n) = T c2r′B−1t
︸ ︷︷ ︸

Op(T 4)

+Op(T
7/2).

Hence,

plim
T→∞

b̂ = plim
T→∞

1
T 3 c2r′B−1t+Op(T

−1/2)
1
T 3 c2r′B−1r+ op(1)

= plim
T→∞

r′B−1t

r′B−1r
= plim

T→∞

r′B−1β
∑
ε2t−1p

r′B−1
∑
ε2t−1p

= β (C5)
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Next we investigate the asymptotic behavior of s2, which is defined as

s2 =

(
y −X−1b̂IV

)′ (
y −X−1b̂IV

)

T − 2
.

Introduce the additional auxiliary notation h ≡
∑
y2t , o ≡

∑
xt−1yt, and m ≡

∑
x2t . The respective

orders are Op(T ), Op(T ) if β 6= 0 and Op(T
d+1/2) otherwise, and Op(T ). We can re-write s2 as

s2 =
h b̂(d) − 2y â(n) − 2ob̂(n) + T ââ(n) + 2x â(n)b̂+ m b̂b̂(n)

(T − 2)b̂(d)
.

Note that the denominator of s2, s2(d), is equal to (T − 2)a(d) = (T − 2)b(d). For the case where β 6= 0,

we can write the numerator of s2, s2(n), in the limit as

s2(n) = h b̂(d) − 2y â(n) − 2ob̂(n) + T ââ(n) + m b̂b̂(n)
︸ ︷︷ ︸

Op(T 5)

+op(T
5),

and hence by plugging in the dominant terms, we find

plim
T→∞

s2(n) = plim
T→∞

{(

α2T + β2
∑

ε2t−1 +
∑

ξ2t

)

T c2r′B−1r− 2αT c2yr′B−1r− 2β
∑

ε2t−1T c2r′B−1t

+Tαc2yr′B−1r+
(∑

ε2t−1 +
∑

z2t−1

)

βT c2r′B−1t+ op(T
5)
}

= plim
T→∞

{(

α2T + β2
∑

ε2t−1 +
∑

ξ2t

)

T 3p′B−1p
(∑

ε2t−1

)2
− 2α2T 4p′B−1p

(∑

ε2t−1

)2

−2β2
(∑

ε2t−1

)3
T 3p′B−1p+ T 4α2p′B−1p

(∑

ε2t−1

)2

+
(∑

ε2t−1 +
∑

z2t−1

)

β2T 3p′B−1p
(∑

ε2t−1

)2
+ op(T

5)

}

= plim
T→∞

{

T 3p′B−1p
(∑

ε2t−1

)2 (∑

ξ2t + β2
∑

z2t

)

+ op(T
5)

}

We can therefore conclude that

plim
T→∞

s2 = plim
T→∞

T 3p′B−1p
(∑

ε2t−1

)2 (∑
ξ2t + β2

∑
z2t
)
+ op(T

5)

T 4p′B−1p
(∑

ε2t−1

)2
+ op(T 5)

= plim
T→∞

T−2p′B−1p
(∑

ε2t−1

)2 (∑
ξ2t + β2

∑
z2t
)

T−1p′B−1p
(∑

ε2t−1

)2

= plim
T→∞

1

T

(∑

ξ2t + β2
∑

z2t

)

= σ2ξ + β2σ2z . (C6)
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Finally, we analyze the asymptotic behavior of the t-statistics. The expressions for
(
X′

−1X−1

)−1
are

given in Equation (C1).

plim
T→∞

ta = plim
T→∞

â

(

plim
T→∞

s2
)−1/2(

plim
T→∞

(

X′
−1Q−1

[
Q′

−1Q−1

]−1
Q′

−1X−1

)−1

(11)

)−1/2

= α
(
σ2ξ + β2σ2z

)−1/2

(

plim
T→∞

1
T b̂

(d) + 1
T x 2c

b̂(d)

)−1/2

= α
(
σ2ξ + β2σ2z

)−1/2
(

plim
T→∞

c2r′B−1r+ op(T
3)

T c2r′B−1r+ op(T 4)

)−1/2

T−1/2plim
T→∞

ta = α
(
σ2ξ + β2σ2z

)−1/2
(

plim
T→∞

T−3c2r′B−1r+ op(1)

T−3c2r′B−1r+ op(1)

)−1/2

= α
(
σ2ξ + β2σ2z

)−1/2
. (C7)

In a similar manner, we determine the asymptotics of tb. To that end, we obtain an expression for B−1.

We can write B =
∑
ε2t−1pp

′ + diag(v) +Op(T
1/2). Thus, we know that

B−1 = (1/f )
(

(diag(v))−1 f − (diag(v))−1
∑

ε2t−1pp
′ (diag(v))−1

)

+Op(T
−1/2),

where f = 1 +
∑
ε2t−1p

′ (diag(v))−1
p. Then

plim
T→∞

tb = plim
T→∞

b̂

(

plim
T→∞

s2
)−1/2(

plim
T→∞

(

X′
−1Q−1

[
Q′

−1Q−1

]−1
Q′

−1X−1

)−1

(22)

)−1/2

= β
(
σ2ξ + β2σ2z

)−1/2
(

plim
T→∞

T c2

b̂(d)

)−1/2

= β
(
σ2ξ + β2σ2z

)−1/2
(

plim
T→∞

T 3 +Op(T
2)

T c2r′B−1r+ op(T 4)

)−1/2

= β
(
σ2ξ + β2σ2z

)−1/2

(

plim
T→∞

T−1

T−1p′B−1p
(∑

ε2t−1

)2

)−1/2

= β
(
σ2ξ + β2σ2z

)−1/2
(

plim
T→∞

p′B−1p
(∑

ε2t−1

)2
)1/2

= β
(
σ2ξ + β2σ2z

)−1/2

(

plim
T→∞

(∑
ε2t−1

)2
p′ (diag(v))−1

p

1 +
∑
ε2t−1p

′ (diag(v))−1
p

)1/2

= β
(
σ2ξ + β2σ2z

)−1/2




plim

T→∞

(∑
ε2t−1

)2∑K
k=1 ρ

2
k

(
∑
υ2k,t−1

)−1

1 +
∑
ε2t−1

∑K
k=1 ρ

2
k

(
∑
υ2k,t−1

)−1






1/2

T−1/2plim
T→∞

tb = β
(
σ2ξ + β2σ2z

)−1/2






σ4ε
∑K

k=1
ρ2k
σ2
υk

1 + σ2ε
∑K

k=1
ρ2k
σ2
υk






1/2

(C8)
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C.2 Case 2 - If β = 0

If we let β = 0, the asymptotic behaviour of â, b̂(d), s2(d), plim
T→∞

(

X′
−1Q−1

[
Q′

−1Q−1

]−1
Q′

−1X−1

)−1

(11)
, and

plim
T→∞

(

X′
−1Q−1

[
Q′

−1Q−1

]−1
Q′

−1X−1

)−1

(22)
remains unaltered. However, the convergence of b̂(n) and s2(n)

changes. For the former, we find the following.

b̂(n) = cr′T cB−1t− Tr′ycB−1q
︸ ︷︷ ︸

Op(T 7/2)

+op(T
3)

= T cr′B−1
(

Tp
∑

ξtεt−1 + Tw
)

︸ ︷︷ ︸

Op(T 7/2)

+op(T
3)

= T 3
∑

ε2t−1p
′B−1

(

p
∑

ξtεt−1 +w
)

︸ ︷︷ ︸

Op(T 7/2)

+Op(T
3)

Hence, in the limit we get

plim
T→∞

b̂ = plim
T→∞

T 3
∑
ε2t−1p

′B−1 (p
∑
ξtεt−1 +w) +Op(T

3)

T 3p′∑ ε2t−1B
−1
∑
ε2t−1p+ op(T 4)

= plim
T→∞

T−1
∑
ε2t−1p

′B−1 (p
∑
ξtεt−1 +w)

T−1p′∑ ε2t−1B
−1
∑
ε2t−1p

= plim
T→∞

p′ (diag(v))−1 (p
∑
ξtεt−1 +w)

p′ (diag(v))−1
p
∑
ε2t−1

= plim
T→∞

∑K
k=1 ρ

2
k

(
∑
υ2k,t−1

)−1 (∑
ξtεt−1 +

∑

ξtυk,t−1

ρk

)

∑K
k=1 ρ

2
k

(
∑
υ2k,t−1

)−1∑
ε2t−1

T 1/2plim
T→∞

b̂ = plim
T→∞

∑K
k=1 ρ

2
k

(
1
T

∑
υ2k,t−1

)−1
(

1
T 1/2

∑
ξtεt−1 +

1

T1/2

∑

ξtυk,t−1

ρk

)

∑K
k=1 ρ

2
k

(
1
T

∑
υ2k,t−1

)−1
1
T

∑
ε2t−1

=

plim
T→∞

1
T 1/2

∑
ξtεt−1

σ2ε
+

∑K
k=1

ρk
σ2
υk

plim
T→∞

1
T 1/2

∑
ξtυk,t−1

σ2ε
∑K

k=1
ρ2k
σ2
υk

(C9)

Note that (C9) is the sum of two independent random variables that has zero mean and asymptotic

variance given by

Var(T 1/2plim
T→∞

b̂) =
σ2ξσ

2
ε

σ4ε
+

∑K
k=1

ρ2k
σ4
υk

σ2ξσ
2
υk

σ4ε

(
∑K

k=1
ρ2k
σ2
υk

)2 =
σ2ξ

(

σ2ε
∑K

k=1
ρ2k
σ2
υk

+ 1
)

σ4ε
∑K

k=1
ρ2k
σ2
υk

. (C10)
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Thus, by the ESMD-CLT the result in Theorem 2 follows suit. Now we consider the error variance s2.

For the case where β = 0, we can write the numerator of s2, s2(n), in the limit as

s2(n) = h b̂(d) − 2y â(n) + T ââ(n)
︸ ︷︷ ︸

Op(T 5)

+op(T
9/2)

plim
T→∞

s2(n) = plim
T→∞

{(

α2T +
∑

ξ2t

)

T c2r′B−1r− 2αT c2yr′B−1r+ Tαc2yr′B−1r
}

= plim
T→∞

{(

α2T +
∑

ξ2t

)

T 3p′B−1p
(∑

ε2t−1

)2
− 2α2T 4p′B−1p

(∑

ε2t−1

)2

+T 4α2p′B−1p
(∑

ε2t−1

)2
}

= plim
T→∞

{
∑

ξ2t T
3p′B−1p

(∑

ε2t−1

)2
}

Since the denominator is the same as in Case 1 in Section C.1 above, we can conclude that

plim
T→∞

s2 = plim
T→∞

∑
ξ2t T

3p′B−1p
(∑

ε2t−1

)2
+ op(T

9/2)

T 4p′B−1p
(∑

ε2t−1

)2
+ op(T 5)

= plim
T→∞

T−2
∑
ξ2t p

′B−1p
(∑

ε2t−1

)2

T−1p′B−1p
(∑

ε2t−1

)2 = σ2ξ (C11)

In the final step, we analyze the asymptotic behavior of the t-statistics. Note that the computation of

the limiting behavior of ta follows exactly the steps in (C7) in Section C.1 above, with plim
T→∞

s2 replaced

by σ2ξ . Then

T−1/2plim
T→∞

ta = α
(
σ2ξ
)−1/2

. (C12)

For the derivation of tb, we make the following replacements in Equation (C8) above. Replace plim
T→∞

s2 by

σ2ξ and plim
T→∞

b̂ by T−1/2 times the expression in (C9). It follows that

T−1/2plim
T→∞

tb = T−1/2

∑K
k=1

ρ2k
σ2
υk

plim
T→∞

(

1
T 1/2

∑
ξtεt−1 +

1

T1/2

∑

ξtυk,t−1

ρk

)

σ2ε
∑K

k=1
ρ2k
σ2
υk

(
σ2ξ
)−1/2






σ4ε
∑K

k=1
ρ2k
σ2
υk

1 + σ2ε
∑K

k=1
ρ2k
σ2
υk






1/2

plim
T→∞

tb =

∑K
k=1

ρ2k
σ2
υk

plim
T→∞

(

1
T 1/2

∑
ξtεt−1 +

1

T1/2

∑

ξtυk,t−1

ρk

)

σ2ε
∑K

k=1
ρ2k
σ2
υk

(
σ2ξ
)−1/2






σ4ε
∑K

k=1
ρ2k
σ2
υk

1 + σ2ε
∑K

k=1
ρ2k
σ2
υk






1/2

(C13)
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By the same logic as before, note that (C13) is a random variable with zero mean and asymptotic variance

equal to

Var







∑K
k=1

ρ2k
σ2
υk

plim
T→∞

(

1
T 1/2

∑
ξtεt−1 +

1

T1/2

∑

ξtυk,t−1

ρk

)

σ2ε
∑K

k=1
ρ2k
σ2
υk







σ4ε
∑K

k=1
ρ2k
σ2
υk

σ2ξ

(

1 + σ2ε
∑K

k=1
ρ2k
σ2
υk

)

σ2ξ

(

1 + σ2ε
∑K

k=1
ρ2k
σ2
υk

)

σ4ε
∑K

k=1
ρ2k
σ2
υk

σ4ε
∑K

k=1
ρ2k
σ2
υk

σ2ξ

(

1 + σ2ε
∑K

k=1
ρ2k
σ2
υk

) = 1, (C14)

where the last line follows directly from (C10).

D Proof of Corollary 1

This section presents proofs for the asymptotic results in Corollary 1. Sargan’s J test for instrument

validity is built upon a two-step procedure: (i) we estimate regression (12) by IV and, (ii) the resulting

residuals, ê, are in turn regressed on the instruments. The residuals of the second regression, v̂, as well

as ê are then used to construct the J statistic, J = T ê′ê−v̂′v̂
ê′ê

, where ê = y−X−1b̂IV and v̂ = ê−Q−1 ˆ̟ .

Note that the test statistic can be written as

J = T
ê′ê− v̂′v̂

ê′ê

=
ê′Q−1(Q

′
−1Q−1)

−1Q′
−1ê

ê′ê
T

=
(−βz+ ξ)′Q−1L

√
ê′ê
T

[

I− L′Q′
−1X−1

(
X′

−1Q−1LL
′Q′

−1X−1

)−1
X′

−1Q−1L
] L′Q′

−1 (−βz+ ξ)
√

ê′ê
T

, (D1)

where

z′ ≡
(

z1 z2 z3 . . . zT−1

)

ξ′ ≡
(

ξ2 ξ3 ξ4 . . . ξT

)

and L is a (K + 1)× (K + 1) matrix such that LL′ = (Q′
−1Q−1)

−1. We can write L as

L =





1√
c

0

− 1√
c
B−1q B−1/2



 .

J in (D1) is the product of the transpose of a (K + 1) × 1 vector multiplied by a (K + 1) × (K + 1)

symmetric and idempotent matrix,
[

I− L′Q′
−1X−1

(
X′

−1Q−1LL
′Q′

−1X−1

)−1
X′

−1Q−1L
]

, that has rank

K − 1, multiplied by the former (K + 1) × 1 vector. If it can be proven that the (K + 1) × 1 vector,
L′Q′

−1(−βz+ξ)
√

ê
′
ê

T

, converges to a standard normal distribution, the usual result follows and J
D
→ χ2

(K−1).
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We can express the vector
L′Q′

−1(−βz+ξ)
√

ê
′
ê

T

as

L′Q′
−1 (−βz+ ξ)
√

ê′ê
T

=
1

√
ê′ê
T






− β√
c

∑
zt−1 +

1√
c

∑
ξt +

β√
c
q′B−1s− 1√

c
q′B−1a

−βB−1/2s+B−1/2a




 , (D2)

where

s ≡










∑
zt−1q1,t−1

∑
zt−1q2,t−1

...
∑
zt−1qK,t−1










a ≡










∑
ξtq1,t−1

∑
ξtq2,t−1

...
∑
ξtqK,t−1










.

Both vectors, s and a, are of the order Op(T
1/2). Thus, if it were not for the first row, which is dominated

by the Op(T
d+1/2) sum

∑
zt−1, this vector would trivially converge to N (0, 1)12. Because of the first row

of (D2), however, the ESMD-CLT does not apply and we cannot show the convergence result.

Now notice that the idempotent matrix that scales the vector in (D2) can be re-written as

[

I− L′Q′
−1X−1

(
X′

−1Q−1LL
′Q′

−1X−1

)−1
X′

−1Q−1L
]

=








q′B−1q

T −
q′B−1

(

x√
T
q−

√
Tr

)(

x√
T
q−

√
Tr

)′
B−1q

T (x−r′B−1q)2+T cr′B−1r−x 2c
−

√
c

T q′B−1/2 +

√
cq′B−1

(

x√
T
q−

√
Tr

)(

x√
T
q−

√
Tr

)′
B−1/2

T (x−r′B−1q)2+T cr′B−1r−x 2c

−
√

c

T B−1/2q+

√
cB−1/2

(

x√
T
q−

√
Tr

)(

x√
T
q−

√
Tr

)′
B−1q

T (x−r′B−1q)2+T cr′B−1r−x 2c

B−1/2(TB−qq′)B−1/2

T −
cB−1/2

(

x√
T
q−

√
Tr

)(

x√
T
q−

√
Tr

)′
B−1/2

T (x−r′B−1q)2+T cr′B−1r−x 2c







.

It follows that the in the limit we find the following.

plim
T→∞

[

I− L′Q′
−1X−1

(
X′

−1Q−1LL
′Q′

−1X−1

)−1
X′

−1Q−1L
]

=










Op(T
−1)

{
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T→∞

(cq′B−1qr′B−1r−c(r′B−1q)2)
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T cr′B−1r+op(T 3)
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T→∞

(T
√

cq′B−1rr′B−1/2−T
√

cr′B−1rq′B−1/2)+op(T
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T cr′B−1r+op(T 3)

}

Op(T
−

1
2 )

Op(T
−

1
2 )

{
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T→∞

(T
√

cB−1/2rq′B−1r−T
√

cB−1/2qr′B−1r)+op(T
2)

plim
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T cr′B−1r+op(T 3)
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B−1/2(TBcr′B−1r−T crr′)B−1/2+op(T
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T→∞

T cr′B−1r+op(T 3)

}

Op(1)










12From the results in Appendix C it follows that
√

ê
′
ê/T

P→
√

β2σ2
z + σ2

ξ .
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This implies that the limit of the idempotent matrix and the (K + 1)× 1 vector is equal to

plim
T→∞







[

I− L′Q′
−1X−1

(
X′

−1Q−1LL
′Q′

−1X−1

)−1
X′

−1Q−1L
] L′Q′

−1 (−βz+ ξ)
√

ê′ê
T







= plim
T→∞

[

I− L′Q′
−1X−1

(
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−1Q−1LL
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−1 (−βz+ ξ)

√

β2σ2z + σ2ξ

=
1

√

β2σ2z + σ2ξ
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T→∞

T cr′B−1r
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T→∞

(
−βB−1/2s+B−1/2a

)
+ op(T

− 1
2 )
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T→∞

B−1/2(TBcr′B−1r−T crr′)B−1/2
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T→∞

T cr′B−1r
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(
−βB−1/2s+B−1/2a

)
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=
1

√

β2σ2z + σ2ξ







0
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(

I − B−1/2rr′B−1

r′B−1r

)

plim
T→∞

(
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)
+ op(1)







;

i.e. the first row of the vector [L′Q′
−1(−βz+ ξ)]/

√

ê′ê/T in (D2) disappears in the limit. The remaining

terms, [plim
T→∞

(−βB−1/2s+B−1/2a)]/
√

β2σ2z + σ2ξ , are (scaled) sums of martingale difference sequences by

Lemma 1. By the ESMD-CLT they converge to a standard normal distribution. Hence, J is asymptoti-

cally equivalent to

(

0 n′
)

×




0 0

0 plim
T→∞

(

I − B−1/2rr′B−1

r′B−1r

)



×

(

0

n

)

= n′plim
T→∞

(

I −
B−1/2rr′B−1

r′B−1r

)

n ∼ χ2
(K−1),

where n is a K × 1 vector that has a standard normal distribution, N (0, 1). Since plim
T→∞

(I − B−1/2rr′B−1

r′B−1r
)

is the probability limit of a K × K symmetric and idempotent matrix of rank K − 1 the above result

holds and it follows that

J
D
→ χ2

(K−1). (D3)
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Cuñado, J., Gil-Alana, L. A. and Perez de Garcia, F. (2005). A Test for Rational Bubbles in the NASDAQ

Stock Index: A Fractionally Integrated Approach, Journal of Banking and Finance 29(10): 2633–2654.

Deng, A. (2014). Understanding Spurious Regression in Financial Economics, Journal of Financial

Econometrics 12(1): 122–150.

39



Diebold, F. X. and Inoue, A. (2001). Long memory and regime switching, Journal of Econometrics

105(1): 131–159.

Diebold, F. X. and Li, C. (2006). Forecasting the term structure of government bond yields, Journal of

Econometrics 130: 337–364.

Ding, Z., Granger, C. W. J. and Engle, R. F. (1993). A Long Memory Property of Stock Market Returns

and a New Model, Journal of Empirical Finance 1: 83–106.

Dolado, J. J., Gonzalo, J. and Mayoral, L. (2002). A Fractional Dickey-Fuller Test for Unit Roots,

Econometrica 70(5): 1963–2006.

Elliott, G. and Stock, J. H. (1994). Inference in Time Series Regression when the Order of Integration of

a Regressor Is Unknown, Econometric Theory 10: 672–700.

Engle, R. F. and Bollerslev, T. (1986). Modelling the Persistence of Conditional Variances, Econometric

Reviews 5: 1–50.

Engle, R. F., Lilien, D. M. and Robins, R. P. (1987). Estimating Time Varying Risk Premia in the Term

Structure: the ARCH-M Model, Econometrica 55: 391–407.

Fama, E. F. and French, K. R. (1988). Dividend yields and expected stock returns, Journal of Financial

Economics 22: 3–27.

Fama, E. F. and French, K. R. (1989). Business conditions and expected returns on stocks and bonds,

Journal of Financial Economics 25(1): 23–49.

Ferson, W. E., Sarkissian, S. and Simin, T. T. (2003). Spurious Regressions in Financial Economics?,

Journal of Finance 58(4): 1393–1414.

Geweke, J. and Porter-Hudak, S. (1983). The estimation and application of long memory time series

models, Journal of Time Series Analysis 4: 221–237.

Glosten, L. R., Jagannathan, R. and Runkle, D. E. (1993). On the relation between the expected value

and the volatility of the nominal excess return on stocks, The Journal of Finance 48(5): 1779–1801.

Gonzalo, J. and Pitarakis, J.-Y. (2012). Regime-Specific Predictability in Predictive Regressions, Journal

of Business and Economic Statistics 30(2): 229–241.

Granger, C. W. J. (1980). Long-Memory Relationships and the Aggregation of Dynamic Models, Journal

of Econometrics 14: 227–238.

Hamilton, J. D. (1994). Time Series Analysis, Princeton University Press, Princeton, New Jersey.

Henry, M. and Zaffaroni, P. (2002). The long range dependence paradigm for macroeconomics and finance,

Columbia University, Department of Economics, Discussion Paper Series 0102-19.

40



Huang, X. and Tauchen, G. (2005). The Relative Contribution of Jumps to Total Price Variance, Journal

of Financial Econometrics 3: 456–499.

Hurvich, C. M., Moulines, E. and Soulier, P. (2005). Estimating Long Memory in Volatility, Econometrica

73(4): 1283–1328.

Jansson, M. and Moreira, M. (2006). Optimal Inference in Regression Models with Nearly Integrated

Regressors, Econometrica 74(3): 681–714.

Johansen, S. (2008). A representation theory for a class of vector autoregressive models for fractional

processes, Econometric Theory 24: 651676.

Johansen, S. (2009). Representation of cointegrated autoregressive processes with application to fractional

processes, Econometric Reviews 28: 121–145.

Johansen, S. and Nielsen, M. O. (2012). Likelihood Inference for a Fractionally Cointegrated Vector

Autoregressive Model, Econometrica 80(6): 2667–2732.

Kothari, S. P. and Shanken, J. (1997). Book-to-Market, Dividend Yield, and Expected Market Returns:

A Time Series Analysis, Journal of Financial Economics 18: 169–203.
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Tables

Table 1: Size, Power, and (In-)Consistency of OLS Estimate b̂

The table reports rejection rates in % at a nominal size of 5% based on a standard t-test of H0 : β = 0 vs. H1 : β 6= 0. We

estimate Regression (12) by OLS. Simulations are based on 200,000 repetitions. The table also outlines the relative bias in

the estimate, (b̂/β)× 100 in gray font. All errors are drawn from t-distributions.

d

β

0.1 0.23 0.36 0.49

σξ, σε, ση T -3 0 0.8 3 -3 0 0.8 3 -3 0 0.8 3 -3 0 0.8 3

1.7,1.7,1.7 250 99 5.1 94 99 99 5.1 92 99 99 5.1 83 98 90 5.1 48 90
50 50 50 48 48 48 44 44 44 36 36 36

1.7,1.7,1.7 1000 100 5.0 100 100 100 5.0 100 100 100 5.1 99 100 99 5.0 94 99
50 50 50 47 47 47 42 42 42 32 32 32

1.7,1.7,1.1 250 100 5.1 100 100 100 5.2 100 100 100 5.2 99 100 100 5.3 93 100
68 68 68 66 66 66 62 62 62 54 54 54

1.7,1.7,1.1 1000 100 5.0 100 100 100 5.0 100 100 100 5.0 100 100 100 5.0 100 100
69 69 69 66 66 66 61 61 61 50 50 50

1.7,1.1,1.7 250 98 5.1 64 98 98 5.1 57 98 95 5.1 35 95 67 5.2 9 67
32 32 32 30 30 30 27 27 27 21 21 21

1.7,1.1,1.7 1000 100 5.1 99 100 100 5.1 98 100 100 5.0 95 100 97 5.0 48 97
31 31 31 29 29 29 24 24 24 17 17 17

1.7,1.1,1.1 250 100 5.1 97 100 100 5.1 96 100 100 5.1 91 100 99 5.1 59 99
50 50 50 48 48 48 43 43 43 36 36 36

1.7,1.1,1.1 1000 100 5.0 100 100 100 5.1 100 100 100 5.0 100 100 100 5.1 98 100
50 50 50 47 47 47 41 41 41 31 31 31

1.1,1.7,1.7 250 99 5.2 98 99 99 5.1 98 99 99 5.1 95 99 92 5.1 72 92
50 50 50 48 48 48 44 44 44 36 36 36

1.1,1.7,1.7 1000 100 4.9 100 100 100 5.0 100 100 100 5.0 100 100 99 5.1 98 99
50 50 50 47 47 47 42 42 42 32 32 32

1.1,1.7,1.1 250 100 5.1 100 100 100 5.2 100 100 100 5.2 100 100 100 5.2 99 100
68 68 68 66 66 66 62 62 62 54 54 54

1.1,1.7,1.1 1000 100 5.0 100 100 100 5.1 100 100 100 5.0 100 100 100 5.1 100 100
69 69 69 66 66 66 61 61 61 50 50 50

1.1,1.1,1.7 250 99 5.1 90 99 98 5.2 86 98 96 5.1 69 96 73 5.2 26 73
32 32 32 30 30 30 27 27 27 21 21 21

1.1,1.1,1.7 1000 100 5.0 100 100 100 5.1 99 100 100 5.1 99 100 98 5.1 80 98
31 31 31 29 29 29 24 24 24 17 17 17

1.1,1.1,1.1 250 100 5.0 100 100 100 5.1 100 100 100 5.2 100 100 100 5.1 88 100
50 50 50 48 48 48 43 43 43 36 36 36

1.1,1.1,1.1 1000 100 5.1 100 100 100 5.1 100 100 100 5.0 100 100 100 5.1 100 100
50 50 50 47 47 47 41 41 41 31 31 31
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Table 2: Size, Power, and Consistency of IV Estimate b̂

The table reports rejection rates in % at a nominal size of 5% based on a standard t-test of H0 : β = 0 vs. H1 : β 6= 0. We estimate

Regression (12) by IV. Simulations are based on 200,000 repetitions. The table also outlines the relative bias in the estimate,

(b̂/β)× 100 in gray font. All errors are drawn from standard normal distributions.

d

Corr(qt, x
∗
t )

β

0.1 0.295 0.49

-0.8 0.65 -0.8 0.65 -0.8 0.65

σξ, σε, ση, συ T -2 0 3 -2 0 3 -2 0 3 -2 0 3 -2 0 3 -2 0 3

1.7,1.7,1.7,1.7 250 100 4.7 100 100 4.4 100 100 4.7 100 100 4.3 100 100 4.5 100 100 4.0 100
101 101 101 101 101 101 101 101 101 101 102 102

1.7,1.7,1.7,1.7 1000 100 4.9 100 100 4.9 100 100 4.9 100 100 4.8 100 100 4.9 100 100 4.7 100
100 100 100 100 100 100 100 100 100 100 101 101

1.7,1.7,1.7,1.1 250 100 4.7 100 100 4.4 100 100 4.6 100 100 4.3 100 100 4.5 100 100 4.0 100
101 101 101 101 101 101 101 101 101 101 102 102

1.7,1.7,1.7,1.1 1000 100 4.9 100 100 4.9 100 100 4.9 100 100 4.8 100 100 4.9 100 100 4.7 100
100 100 100 100 100 100 100 100 100 100 101 101

1.7,1.7,1.1,1.7 250 100 4.9 100 100 4.6 100 100 4.8 100 100 4.7 100 100 4.8 100 100 4.5 100
100 100 100 100 100 100 100 100 100 101 101 101

1.7,1.7,1.1,1.7 1000 100 5.0 100 100 4.9 100 100 5.0 100 100 4.9 100 100 5.0 100 100 4.8 100
100 100 100 100 100 100 100 100 100 100 100 100

1.7,1.7,1.1,1.1 250 100 4.8 100 100 4.7 100 100 4.8 100 100 4.7 100 100 4.7 100 100 4.6 100
100 100 100 100 100 100 100 100 101 101 101 101

1.7,1.7,1.1,1.1 1000 100 5.0 100 100 4.9 100 100 5.0 100 100 4.9 100 100 4.9 100 100 4.8 100
100 100 100 100 100 100 100 100 100 100 100 100

1.7,1.1,1.7,1.7 250 100 4.3 100 100 3.8 100 100 4.2 100 100 3.6 100 100 3.8 100 99 3.0 99
102 102 102 102 102 102 103 103 103 103 105 105

1.7,1.1,1.7,1.7 1000 100 4.8 100 100 4.7 100 100 4.8 100 100 4.6 100 100 4.7 100 100 4.4 100
100 100 101 101 100 100 101 101 101 101 101 101

1.7,1.1,1.7,1.1 250 100 4.3 100 100 3.8 100 100 4.1 100 100 3.7 100 100 3.7 100 99 3.0 99
102 102 102 102 102 102 103 103 103 103 105 105

1.7,1.1,1.7,1.1 1000 100 4.8 100 100 4.7 100 100 4.8 100 100 4.6 100 100 4.6 100 100 4.4 100
100 100 101 101 100 100 101 101 101 101 101 101

1.7,1.1,1.1,1.7 250 100 4.7 100 100 4.4 100 100 4.6 100 100 4.4 100 100 4.4 100 100 4.1 100
101 101 101 101 101 101 101 101 101 101 102 102

1.7,1.1,1.1,1.7 1000 100 4.9 100 100 4.8 100 100 4.9 100 100 4.8 100 100 4.8 100 100 4.7 100
100 100 100 100 100 100 100 100 100 100 101 101

1.7,1.1,1.1,1.1 250 100 4.6 100 100 4.5 100 100 4.6 100 100 4.4 100 100 4.4 100 100 4.0 100
101 101 101 101 101 101 101 101 101 101 102 102

1.7,1.1,1.1,1.1 1000 100 4.9 100 100 4.8 100 100 4.9 100 100 4.9 100 100 4.8 100 100 4.7 100
100 100 100 100 100 100 100 100 100 100 101 101

1.1,1.7,1.7,1.7 250 100 4.7 100 100 4.4 100 100 4.6 100 100 4.3 100 100 4.5 100 100 4.0 100
101 101 101 101 101 101 101 101 101 101 102 102

1.1,1.7,1.7,1.7 1000 100 4.9 100 100 4.9 100 100 4.9 100 100 4.8 100 100 4.9 100 100 4.7 100
100 100 100 100 100 100 100 100 100 100 101 101

1.1,1.7,1.7,1.1 250 100 4.7 100 100 4.4 100 100 4.6 100 100 4.4 100 100 4.4 100 100 4.1 100
101 101 101 101 101 101 101 101 101 101 102 102

1.1,1.7,1.7,1.1 1000 100 4.9 100 100 4.8 100 100 4.9 100 100 4.8 100 100 4.8 100 100 4.7 100
100 100 100 100 100 100 100 100 100 100 101 101

1.1,1.7,1.1,1.7 250 100 4.8 100 100 4.7 100 100 4.8 100 100 4.7 100 100 4.7 100 100 4.6 100
100 100 100 100 100 100 100 100 101 101 101 101

1.1,1.7,1.1,1.7 1000 100 5.0 100 100 4.9 100 100 5.0 100 100 4.9 100 100 4.9 100 100 4.8 100
100 100 100 100 100 100 100 100 100 100 100 100

1.1,1.7,1.1,1.1 250 100 4.8 100 100 4.7 100 100 4.8 100 100 4.7 100 100 4.7 100 100 4.5 100
100 100 100 100 100 100 100 100 101 101 101 101

1.1,1.7,1.1,1.1 1000 100 5.0 100 100 4.9 100 100 4.9 100 100 5.0 100 100 4.9 100 100 4.9 100
100 100 100 100 100 100 100 100 100 100 100 100

1.1,1.1,1.7,1.7 250 100 4.3 100 100 3.8 100 100 4.1 100 100 3.7 100 100 3.7 100 99 3.0 99
102 102 102 102 102 102 103 103 103 103 105 105
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Table 2 – continued from previous page

1.1,1.1,1.7,1.7 1000 100 4.8 100 100 4.7 100 100 4.8 100 100 4.6 100 100 4.6 100 100 4.4 100
100 100 101 101 100 100 101 101 101 101 101 101

1.1,1.1,1.7,1.1 250 100 4.2 100 100 3.8 100 100 4.2 100 100 3.7 100 100 3.7 100 99 3.0 99
102 102 102 102 102 102 103 103 103 103 105 105

1.1,1.1,1.7,1.1 1000 100 4.8 100 100 4.7 100 100 4.8 100 100 4.7 100 100 4.6 100 100 4.4 100
100 100 101 101 100 100 101 101 101 101 101 101

1.1,1.1,1.1,1.7 250 100 4.6 100 100 4.5 100 100 4.6 100 100 4.4 100 100 4.4 100 100 4.0 100
101 101 101 101 101 101 101 101 101 101 102 102

1.1,1.1,1.1,1.7 1000 100 4.9 100 100 4.8 100 100 4.9 100 100 4.9 100 100 4.8 100 100 4.7 100
100 100 100 100 100 100 100 100 100 100 101 101

1.1,1.1,1.1,1.1 250 100 4.7 100 100 4.5 100 100 4.6 100 100 4.3 100 100 4.4 100 100 4.1 100
101 101 101 101 101 101 101 101 101 101 102 102

1.1,1.1,1.1,1.1 1000 100 4.9 100 100 4.9 100 100 4.9 100 100 4.8 100 100 4.8 100 100 4.7 100
100 100 100 100 100 100 100 100 100 100 101 101

Table 3: Size, Power, and (In-)Consistency of IV Estimate b̂ with Irrel-

evant Instrument

The table reports rejection rates in % at a nominal size of 5% based on a standard t-test

of H0 : β = 0 vs. H1 : β 6= 0. We estimate Regression (12) by IV using an irrelevant

instrument. That is, we set Corr(qt, x
∗
t ) equal to zero. Simulations are based on 200,000

repetitions. The table also outlines the relative bias in the estimate, (b̂/β) × 100 in

gray font. All errors are drawn from continuous uniform distributions.

d

β

0.1 0.295 0.49

σξ, σε, ση, συ T -2 0 3 -2 0 3 -2 0 3

1.7,1.7,1.7,1.7 250 4 0.01 5 3 0.01 4 2 0.01 3
-218 -135 73 25 86 80

1.7,1.7,1.7,1.7 1000 4 0.01 5 3 0.01 4 2 0.01 2
23 127 33 58 -84 6

1.7,1.7,1.7,1.1 250 4 0.01 5 3 0.02 5 2 0.01 3
-122 -130 71 -1522 157 133

1.7,1.7,1.7,1.1 1000 4 0.01 5 3 0.01 4 2 0.01 2
-526 278 25 46 -105 -80

1.7,1.7,1.1,1.7 250 9 0.01 13 8 0.01 11 6 0.01 7
-412 1472 53 71 434 81

1.7,1.7,1.1,1.7 1000 9 0.01 13 8 0.01 11 4 0.01 6
76 -414 -10 -228 412 -91

1.7,1.7,1.1,1.1 250 9 0.01 13 8 0.01 11 6 0.01 7
-539 429 74 -27 121 406

1.7,1.7,1.1,1.1 1000 9 0.01 12 8 0.01 11 4 0.01 6
-335 86 -56 294 483 54

1.7,1.1,1.7,1.7 250 1 0.01 1 1 0.01 1 0 0.01 1
-13 18 358 -101 162 76

1.7,1.1,1.7,1.7 1000 1 0.01 1 1 0.01 1 0 0.01 0
-294 65 -2227 -2268 147 7

1.7,1.1,1.7,1.1 250 1 0.01 1 1 0.01 1 0 0.01 1
-2 -13 -73 -77 81 -10

1.7,1.1,1.7,1.1 1000 1 0.01 1 1 0.01 1 0 0.01 0
-333 108 -2316 -2307 57 11

1.7,1.1,1.1,1.7 250 2 0.01 4 2 0.01 3 1 0.01 2
-70 95 -66 -1928 247 71

1.7,1.1,1.1,1.7 1000 2 0.01 4 2 0.01 3 1 0.01 2
148 59 68 23 -147 103
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Table 3 – continued from previous page

1.7,1.1,1.1,1.1 250 2 0.01 4 2 0.01 3 1 0.01 2
140 426 -134 1974 27 -5

1.7,1.1,1.1,1.1 1000 2 0.01 4 2 0.01 3 1 0.01 1
17 56 -10 -142 28 91

1.1,1.7,1.7,1.7 250 5 0.01 6 4 0.02 5 3 0.01 3
-125 -124 61 -1367 141 145

1.1,1.7,1.7,1.7 1000 5 0.01 6 4 0.01 5 2 0.01 2
-391 265 32 48 -82 -87

1.1,1.7,1.7,1.1 250 5 0.01 6 5 0.01 5 3 0.01 3
-94 106 -633 -1419 201 61

1.1,1.7,1.7,1.1 1000 5 0.01 6 4 0.01 5 2 0.01 2
200 49 59 16 -119 86

1.1,1.7,1.1,1.7 250 13 0.01 15 11 0.01 13 7 0.01 9
-122 251 74 -8 113 408

1.1,1.7,1.1,1.7 1000 13 0.01 15 11 0.01 12 6 0.01 7
-352 95 -92 262 364 48

1.1,1.7,1.1,1.1 250 13 0.01 15 11 0.01 13 7 0.01 9
-593 -179 80 81 415 16

1.1,1.7,1.1,1.1 1000 13 0.01 15 11 0.01 12 6 0.01 7
139 146 117 446 17 -278

1.1,1.1,1.7,1.7 250 1 0.01 2 1 0.01 1 1 0.01 1
2 -14 -79 -70 80 -14

1.1,1.1,1.7,1.7 1000 1 0.01 2 1 0.01 1 0 0.01 1
-250 66 -2306 -2332 47 18

1.1,1.1,1.7,1.1 250 1 0.01 2 1 0.01 1 1 0.01 1
-17 -5 -37 -470 -33 -36

1.1,1.1,1.7,1.1 1000 1 0.01 2 1 0.01 1 0 0.01 1
-133 99 -2452 -9 47 120

1.1,1.1,1.1,1.7 250 4 0.01 5 3 0.01 4 2 0.01 3
131 351 -506 1839 36 -11

1.1,1.1,1.1,1.7 1000 4 0.01 5 3 0.01 4 2 0.01 2
26 51 -3 -134 43 85

1.1,1.1,1.1,1.1 250 4 0.01 5 3 0.01 4 2 0.01 3
-3 426 1202 26 -38 27

1.1,1.1,1.1,1.1 1000 4 0.01 5 3 0.01 4 2 0.01 2
27 -327 -93 53 58 -11

Table 4: Size, Power, and (In-)Consistency of IV Estimate b̂ with Invalid

Instruments

The table reports rejection rates in % at a nominal size of 5% based on a standard t-test of H0 : β = 0 vs. H1 : β 6= 0. We

estimate Regression (12) by IV using an invalid instrument of type 1 and type 2. That is, we set Corr(qt−1, zt−1) = 0.7 for the

invalid instrument of type 1; for the invalid instrument of type 2, we let Corr(qt−1, ξt) = 0.7. Both instruments are relevant

with Corr(qt, x
∗
t ) = 0.7. Simulations are based on 200,000 repetitions. The table also outlines the relative bias in the estimate,

(b̂/β)× 100 in gray font. All errors are drawn from standard normal distributions.

d

Invalid Instrument

β

0.1 0.295 0.49

type 1 type 2 type 1 type 2 type 1 type 2

σξ, σε, ση, σµ T -2 0 3 -2 0 3 -2 0 3 -2 0 3 -2 0 3 -2 0 3

1.7,1.7,1.7,1.7 250 100 5.1 100 100 100 87 100 5.1 100 100 100 79 100 5.0 100 99 100 51
50 50 50 135 49 49 50 135 69 69 50 136

1.7,1.7,1.7,1.7 1000 100 5.0 100 100 100 100 100 5.0 100 100 100 100 100 5.0 100 100 100 99
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Table 4 – continued from previous page

50 50 50 134 48 48 50 134 65 65 50 134
1.7,1.7,1.7,1.1 250 100 5.1 100 100 100 87 100 5.1 100 100 100 79 100 5.0 100 99 100 51

50 50 50 135 49 49 50 135 69 69 50 136
1.7,1.7,1.7,1.1 1000 100 5.0 100 100 100 100 100 5.0 100 100 100 100 100 5.0 100 100 100 99

50 50 50 134 48 48 50 134 65 65 50 134
1.7,1.7,1.1,1.7 250 100 5.1 100 100 100 100 100 5.1 100 100 100 99 99 5.1 99 100 100 93

60 60 50 134 60 60 50 134 77 77 50 135
1.7,1.7,1.1,1.7 1000 100 5.0 100 100 100 100 100 5.0 100 100 100 100 100 5.0 100 100 100 100

60 60 50 134 59 59 50 134 74 74 50 134
1.7,1.7,1.1,1.1 250 100 5.1 100 100 100 100 100 5.1 100 100 100 99 99 5.1 99 100 100 94

60 60 50 134 60 60 50 134 77 77 50 135
1.7,1.7,1.1,1.1 1000 100 5.0 100 100 100 100 100 5.0 100 100 100 100 100 5.0 100 100 100 100

60 60 50 134 59 59 50 134 74 74 50 134
1.7,1.1,1.7,1.7 250 100 5.1 100 100 100 80 100 5.1 100 100 100 68 100 4.9 100 99 100 22

40 40 23 155 39 39 24 155 60 60 24 158
1.7,1.1,1.7,1.7 1000 100 5.0 100 100 100 100 100 5.0 100 100 100 100 100 5.0 100 100 100 99

39 39 24 152 38 38 24 152 55 55 24 153
1.7,1.1,1.7,1.1 250 100 5.1 100 100 100 80 100 5.1 100 100 100 68 100 4.9 100 99 100 22

40 40 23 155 39 39 24 155 60 60 24 158
1.7,1.1,1.7,1.1 1000 100 5.0 100 100 100 100 100 5.0 100 100 100 100 100 5.0 100 100 100 99

39 39 24 152 38 38 24 152 55 55 24 153
1.7,1.1,1.1,1.7 250 100 5.1 100 100 100 100 100 5.1 100 100 100 99 99 5.0 100 100 100 90

50 50 23 153 49 49 23 153 69 69 23 154
1.7,1.1,1.1,1.7 1000 100 5.0 100 100 100 100 100 5.1 100 100 100 100 100 5.0 100 100 100 100

50 50 23 151 48 48 24 151 65 65 24 152
1.7,1.1,1.1,1.1 250 100 5.1 100 100 100 100 100 5.2 100 100 100 99 99 5.0 100 100 100 90

50 50 23 153 49 49 23 153 69 69 23 154
1.7,1.1,1.1,1.1 1000 100 5.0 100 100 100 100 100 5.0 100 100 100 100 100 5.1 100 100 100 100

50 50 23 151 48 48 24 151 65 65 24 152
1.1,1.7,1.7,1.7 250 100 5.1 100 96 100 46 100 5.1 100 94 100 37 100 5.0 100 85 100 17

50 50 68 123 49 49 68 123 69 69 68 124
1.1,1.7,1.7,1.7 1000 100 5.0 100 100 100 99 100 5.0 100 100 100 98 100 5.0 100 100 100 83

50 50 67 122 48 48 67 122 65 65 68 122
1.1,1.7,1.7,1.1 250 100 5.1 100 96 100 46 100 5.1 100 94 100 37 100 5.0 100 85 100 17

50 50 68 123 49 49 68 123 69 69 68 124
1.1,1.7,1.7,1.1 1000 100 5.0 100 100 100 99 100 5.1 100 100 100 98 100 5.0 100 100 100 83

50 50 67 122 48 48 67 122 65 65 68 122
1.1,1.7,1.1,1.7 250 100 5.1 100 100 100 90 100 5.1 100 100 100 84 99 5.1 100 98 100 62

60 60 67 122 60 60 67 123 77 77 67 123
1.1,1.7,1.1,1.7 1000 100 5.0 100 100 100 100 100 5.0 100 100 100 100 100 5.0 100 100 100 99

60 60 67 122 59 59 67 122 74 74 67 122
1.1,1.7,1.1,1.1 250 100 5.1 100 100 100 90 100 5.1 100 100 100 84 100 5.1 100 98 100 62

60 60 67 122 60 60 67 123 77 77 67 123
1.1,1.7,1.1,1.1 1000 100 5.0 100 100 100 100 100 5.0 100 100 100 100 100 5.1 100 100 100 99

60 60 67 122 59 59 67 122 74 74 67 122
1.1,1.1,1.7,1.7 250 100 5.1 100 97 100 30 100 5.1 100 96 100 18 100 4.9 100 89 100 2

40 40 51 136 39 39 51 137 60 60 52 139
1.1,1.1,1.7,1.7 1000 100 5.0 100 100 100 99 100 5.0 100 100 100 98 100 5.0 100 100 100 78

39 39 50 134 38 38 50 134 55 55 50 135
1.1,1.1,1.7,1.1 250 100 5.1 100 97 100 30 100 5.1 100 96 100 18 100 4.9 100 89 100 2

40 40 51 137 39 39 51 137 60 60 52 139
1.1,1.1,1.7,1.1 1000 100 5.0 100 100 100 99 100 5.0 100 100 100 98 100 5.1 100 100 100 78

39 39 50 134 38 38 50 134 55 55 50 135
1.1,1.1,1.1,1.7 250 100 5.1 100 100 100 87 100 5.2 100 100 100 79 100 5.0 100 99 100 51

50 50 50 135 49 49 50 135 69 69 50 136
1.1,1.1,1.1,1.7 1000 100 5.0 100 100 100 100 100 5.0 100 100 100 100 100 5.1 100 100 100 99

50 50 50 134 48 48 50 134 65 65 50 134
1.1,1.1,1.1,1.1 250 100 5.1 100 100 100 87 100 5.1 100 100 100 79 100 4.9 100 99 100 51

50 50 50 135 49 49 50 135 69 69 50 136
1.1,1.1,1.1,1.1 1000 100 5.0 100 100 100 100 100 5.1 100 100 100 100 100 5.0 100 100 100 99

50 50 50 134 48 48 50 134 65 65 50 134
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Table 5: Size and Power of J−test

The table reports rejection rates in % at a nominal size of 5% based on a J -test of H0 : valid instruments vs. H1 : invalid instruments of type 2. We estimate Regression (12) by IV with

K = 2 and subsequently estimate Regression (24) by OLS to compute the J -statistic. q1,t and q2,t are strongly and weakly relevant, respectively, with Corr([q1,t−1 q2,t−1]′, x∗
t−1) = [0.85, 0.1]′.

Simulations are based on 200,000 repetitions. All errors are drawn from t-distributions.

d

Corr([q1,t−1 q2,t−1]′, ξt)

β

0.1 0.295 0.49

[0.5, −0.6]′ [0, 0]′ [−0.4, 0.3]′ [0.5, −0.6]′ [0, 0]′ [−0.4, 0.3]′ [0.5, −0.6]′ [0, 0]′ [−0.4, 0.3]′

σξ, σε, ση , σµ T -2 0 3 -2 0 3 -2 0 3 -2 0 3 -2 0 3 -2 0 3 -2 0 3 -2 0 3 -2 0 3

1.7,1.7,1.7,1.7 250 99 100 76 5.3 5.1 5.3 52 97 55 98 100 71 5.3 5.1 5.3 48 97 51 94 100 57 5.4 5.1 5.4 37 95 40
1.7,1.7,1.7,1.7 1000 100 100 99 5.1 5.0 5.1 96 100 96 100 100 99 5.1 5.0 5.0 93 100 93 100 100 94 5.1 4.9 5.0 78 100 80
1.7,1.7,1.7,1.1 250 99 100 75 5.2 5.0 5.3 49 98 52 98 100 70 5.2 5.0 5.3 45 97 48 94 100 55 5.3 5.0 5.4 35 95 38
1.7,1.7,1.7,1.1 1000 100 100 100 5.1 5.0 5.0 96 100 96 100 100 99 5.1 4.9 5.1 93 100 93 100 100 94 5.2 4.9 5.2 77 100 79
1.7,1.7,1.1,1.7 250 100 100 94 5.1 5.1 5.2 74 98 75 100 100 92 5.1 5.2 5.2 70 98 71 99 100 82 5.2 5.1 5.2 57 97 60
1.7,1.7,1.1,1.7 1000 100 100 100 5.1 4.9 5.1 100 100 100 100 100 100 5.0 4.9 5.1 99 100 99 100 100 100 5.1 5.0 5.1 96 100 96
1.7,1.7,1.1,1.1 250 100 100 94 5.2 5.1 5.2 71 99 73 100 100 91 5.2 5.0 5.2 67 99 69 100 100 80 5.1 5.1 5.3 54 98 57
1.7,1.7,1.1,1.1 1000 100 100 100 5.1 5.0 5.1 100 100 100 100 100 100 5.0 5.0 5.1 100 100 100 100 100 100 5.0 5.1 5.1 96 100 96
1.7,1.1,1.7,1.7 250 99 100 73 5.5 5.0 5.5 48 95 59 99 100 68 5.5 5.0 5.5 44 94 55 95 99 54 5.7 4.9 5.9 35 90 45
1.7,1.1,1.7,1.7 1000 100 100 99 5.1 4.9 5.1 93 100 97 100 100 99 5.1 5.0 5.1 90 100 96 100 100 92 5.2 4.9 5.2 72 100 85
1.7,1.1,1.7,1.1 250 99 100 71 5.4 5.0 5.4 45 95 57 99 100 66 5.4 5.0 5.4 41 94 53 95 100 52 5.7 4.9 5.8 32 90 43
1.7,1.1,1.7,1.1 1000 100 100 99 5.1 5.0 5.1 93 100 97 100 100 99 5.1 5.0 5.1 89 100 96 100 100 92 5.2 5.0 5.2 71 100 84
1.7,1.1,1.1,1.7 250 100 100 93 5.1 5.0 5.3 70 98 79 100 100 90 5.1 5.1 5.3 66 98 75 100 100 78 5.3 5.0 5.3 53 96 64
1.7,1.1,1.1,1.7 1000 100 100 100 5.1 5.0 5.1 99 100 100 100 100 100 5.0 5.1 5.1 99 100 100 100 100 99 5.1 5.0 5.0 93 100 98
1.7,1.1,1.1,1.1 250 100 100 92 5.1 5.0 5.2 67 98 77 100 100 89 5.1 5.0 5.2 63 98 73 100 100 77 5.3 5.0 5.4 50 97 62
1.7,1.1,1.1,1.1 1000 100 100 100 5.1 5.0 5.0 100 100 100 100 100 100 5.1 5.1 5.1 99 100 100 100 100 100 5.1 5.0 5.0 94 100 98
1.1,1.7,1.7,1.7 250 94 100 56 5.2 5.1 5.2 37 98 32 92 100 50 5.3 5.1 5.3 33 97 29 81 100 37 5.5 5.0 5.5 25 95 22
1.1,1.7,1.7,1.7 1000 100 100 97 5.1 5.1 5.0 85 100 79 100 100 94 5.0 5.1 5.0 79 100 72 99 100 79 5.1 5.0 5.1 57 100 50
1.1,1.7,1.7,1.1 250 94 100 54 5.2 5.1 5.2 34 98 30 92 100 49 5.2 5.0 5.3 31 98 27 81 100 36 5.4 4.9 5.4 23 95 21
1.1,1.7,1.7,1.1 1000 100 100 97 5.1 5.1 5.1 84 100 78 100 100 94 5.2 5.0 5.1 78 100 70 99 100 78 5.1 5.0 5.2 56 100 49
1.1,1.7,1.1,1.7 250 100 100 83 5.2 5.1 5.2 59 99 54 99 100 78 5.1 5.1 5.2 54 99 49 97 100 62 5.1 5.0 5.2 42 98 37
1.1,1.7,1.1,1.7 1000 100 100 100 5.0 5.0 5.0 98 100 97 100 100 100 5.1 5.0 5.0 97 100 95 100 100 97 5.0 5.0 4.9 86 100 80
1.1,1.7,1.1,1.1 250 100 100 82 5.1 5.2 5.2 56 99 51 100 100 77 5.1 5.1 5.2 51 99 46 97 100 60 5.3 5.1 5.3 39 99 34
1.1,1.7,1.1,1.1 1000 100 100 100 5.0 5.0 5.0 99 100 97 100 100 100 5.0 5.1 5.0 97 100 95 100 100 98 5.1 5.0 5.1 85 100 79
1.1,1.1,1.7,1.7 250 95 100 54 5.5 4.9 5.4 34 96 35 93 100 48 5.4 4.9 5.5 31 95 32 83 99 36 5.7 4.9 5.8 24 91 24
1.1,1.1,1.7,1.7 1000 100 100 96 5.1 5.1 5.0 81 100 83 100 100 93 5.1 5.0 5.1 74 100 77 100 100 75 5.3 4.9 5.2 52 100 55
1.1,1.1,1.7,1.1 250 96 100 51 5.4 4.9 5.5 32 96 33 93 100 46 5.5 4.9 5.6 29 95 30 83 100 35 5.7 5.0 5.8 22 90 23
1.1,1.1,1.7,1.1 1000 100 100 96 5.0 5.0 5.0 80 100 82 100 100 92 5.1 4.9 5.1 73 100 75 100 100 74 5.2 4.9 5.2 51 100 53
1.1,1.1,1.1,1.7 250 100 100 81 5.3 5.1 5.3 56 98 57 100 100 76 5.3 5.1 5.3 51 98 52 98 100 60 5.4 5.1 5.4 39 97 40
1.1,1.1,1.1,1.7 1000 100 100 100 5.1 5.0 5.1 97 100 98 100 100 100 5.1 5.0 5.1 95 100 96 100 100 96 5.0 5.0 5.1 81 100 84
1.1,1.1,1.1,1.1 250 100 100 80 5.2 5.0 5.2 52 99 54 100 100 74 5.2 5.0 5.2 48 99 49 98 100 58 5.3 5.1 5.3 36 98 37
1.1,1.1,1.1,1.1 1000 100 100 100 5.0 5.0 5.0 98 100 98 100 100 100 5.0 4.9 5.1 96 100 97 100 100 96 5.0 4.9 5.1 81 100 83



Table 6: Long-Memory Estimates

The upper panel of the table reports estimates of d using the multivariate EW estimator

of Nielsen and Shimotsu (2007) for Yt = [rvt, bvt, vix2
t , rt]

′. The size of the spectral

window is set to m = T 0.35; the choice is based on a graphical analysis of the slope of the

log periodograms as suggested by Beran (1994). td=0 denotes the respective t-statistic of

element i of Yt given by 2
√
md̂i. The lower panel of the table summarizes the t-statistics

corresponding to the null hypothesis di = dj for i 6= j. Nielsen and Shimotsu (2007) define

the t-statistic as

tdi=dj =

√
m

(

d̂i − d̂j
)

√

1
2

(

1− τ̂2
i,j

τ̂i,iτ̂j,j

)

+ h(T )

,

where τ̂i,j = 1
m

∑m
l=1 real {I(λl)} and I(λl) is the periodogram of a (4 × 1) vector with

elements ∆d̂iYt,i at frequency λl. h(T ) is a tuning parameter, which we set equal to (ln(T ))−1

as in Nielsen and Shimotsu (2007). The resulting statistic tdi=dj should be compared to

critical values from a t-distribution.

Estimates for d
rvt bvt vix2

t rt

d̂ 0.3517 0.3403 0.4393 0.0202
td=0 2.8134 2.7227 3.5146 0.1618

tdi=dj statistics with h(T ) = 0.1233
rvt bvt vix2

t rt

rvt - 0.2609 -1.6730 2.2602
bvt - -1.7115 2.1587
vix2

t - 2.9844
rt -

Table 7: Summary Statistics and Estimation Results

The first panel of the table reports summary statistics of the three variance series and intraday returns. The

second panel summarizes the estimation results when the predictive regression (29) is evaluated by OLS.

OLS-SE denotes the usual standard error of b, and HAC-SE reports standard errors based on HAC covariance

estimation using a Bartlett kernel. The third panel of the table contains the analogous results from IV

estimation. IV-SE is the usual standard error of b and J is Sargan’s statistic from Corollary 1.

Summary Statistics

Autocorrelation

Average Std. Dev. 1 2 3 22

rt 0.0139 1.2833 -0.0769 -0.0612 0.0205 0.0356
rvt 31.7888 47.6128 0.9976 0.9927 0.9860 0.7009
bvt 25.4352 40.5219 0.9976 0.9927 0.9858 0.6959
vix2

t 45.9689 48.6179 0.9690 0.9469 0.9322 0.7413

OLS Regressions (29)

xt b̂ OLS-SE(b) HAC-SE(b)
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Table 7 – continued from previous page

rvt 4.98×10−5 0.0005 0.0004
bvt 7.70×10−5 0.0005 0.0004
vix2

t 0.0015 0.0005 0.0002

IV Regressions (29)

xt b̂ IV-SE(b) HAC-SE(b) J

rvt -0.0130 0.0024 0.0046 13.7306
bvt -0.0088 0.0021 0.0035 30.3321
vix2

t 0.0128 0.0020 0.0060 1.4128

51



Figures
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(i) OLS: Distribution of T 1/2b̂
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(ii) OLS: Distribution of tb

Figure 1: Small sample behavior of OLS estimates if β = 0 - The figures plot the small sample
distribution of the scaled OLS estimate T 1/2b̂ from 200,000 simulations of the DGP (2)-(5), and the
associated t-statistic, tb. The black solid line reports the asymptotic distribution from Theorem 1. The
gray dots represent the empirical distribution for T = 250; the black crosses are the empirical distribution
for T = 50, 000. In the simulations, we let d = 0.35, ση ≈ 1, σξ ≈ 2, σε ≈ 1.8, α = 1.2, and β = 0. The
innovations in the DGP are drawn from continuous uniform distributions.
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Figure 2: Small sample behavior of OLS estimates if β 6= 0 - The figures plot the small sample
behavior of the OLS estimate b̂ from 200,000 simulations of the DGP (2)-(5), and the associated scaled
t-statistic, T−1/2tb. The x-axis contains varying sample sizes from T = 250 to T = 50, 000. The black
solid line reports the asymptotic value from Theorem 1. The gray dots represent the average estimate
for a given T . In the simulations, we let d = 0.2, ση ≈ 1.2, σξ ≈ 1.7, σε ≈ 1.4, α = 1.2, and β = 4. The
innovations in the DGP are drawn from t-distributions.
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(i) IV: Distribution of T 1/2b̂
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(ii) IV: Distribution of tb

Figure 3: Small sample behavior of IV estimates if β = 0 - The figures plot the small sam-
ple distribution of the scaled IV estimate T 1/2b̂ from 200,000 simulations of the DGP (2)-(5) and
the instruments (19) with K = 9, and the associated t-statistic, tb. The black solid line reports
the asymptotic distribution from Theorem 2. The gray dots represent the empirical distribution for
T = 250; the black crosses are the empirical distribution for T = 50, 000. In the simulations, we let
d = 0.3, ση = 1, σξ = 2, σε = 1.8, συ = [1.5, 1.2, 3.0, 1.5, 1.2, 3.0, 1.5, 1.2, 3.0]′, α = 1.2, β = 0, and
ρ = [3.77, 4.44, 1.77, 0.55, 3.11, 2.66, 1.99, 3.99, 0.99]′. The innovations in the DGP are drawn from stan-
dard normal distributions.
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(ii) IV: T−1/2tb

Figure 4: Small sample behavior of IV estimates if β 6= 0 - The figures plot the small sample
behavior of the IV estimate b̂ from 200,000 simulations of the DGP (2)-(5) and the instruments (19)
with K = 3, and the associated scaled t-statistic, T−1/2tb. The x-axis contains varying sample sizes from
T = 250 to T = 50, 000. The black solid line reports the asymptotic value from Theorem 2. The gray
dots represent the average estimate for a given T . In the simulations, we let d = 0.4, ση ≈ 1.0, σξ ≈ 2.0,
σε ≈ 1.8, συ ≈ [1.5, 1.2, 3.0]′, α = 1.2, β = 3, and ρ = [3.77, 4.44, 1.77]′. The innovations in the DGP are
drawn from continuous uniform distributions.
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(i) ACF: rvt

0 500 1000 1500 2000

0

0.2

0.4

0.6

0.8

1

(ii) ACF: bvt

0 500 1000 1500 2000
−0.2

0

0.2

0.4

0.6

0.8

1

(iii) ACF: vix2
t

0 500 1000 1500 2000

0

0.2

0.4

0.6

0.8

1

(iv) ACF: rt

Figure 5: ACF estimates for the three variance series and returns - The figure plots the estimates
of the autocorrelation of the realized variance, rvt, the bipower variation, bvt, the volatility index, vix2t ,
and daily intraday returns on the the S&P 500, rt. The x-axis measures lags in daily units.
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Figure 6: Roots of the characteristic polynomial of the co-fractional VAR - The figure plots the
roots of the characteristic equation |(1 − c)I3×3 − ϕθ′c − (1 − c)

∑n
i=1 Γic

i| = 0, indicated by the black

stars. The gray line is the image of the complex disk Cd, for d̂ = 0.3775. For θ′Xt to be I(0), all roots
must be equal to one or lie outside the disk.
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