Instructions: No more than 6 problems will be graded—specify which ones you want graded.

Note: Throughout this exam, all manifolds are C^∞ and connected, and all maps are C^∞ unless it is specified otherwise.

1. Let $p : \mathbb{R}^{n+k} \to \mathbb{R}^n, (x_1, \ldots, x_{n+k}) \mapsto (x_1, \ldots, x_n)$ be the projection map. Prove that the forms on \mathbb{R}^{n+k} that are pullbacks of forms on \mathbb{R}^n are exactly those that are in the kernel of the interior multiplications by $\frac{\partial}{\partial x_{n+1}}, \ldots, \frac{\partial}{\partial x_{n+k}}$ and whose d is also in the kernel of the interior multiplications by $\frac{\partial}{\partial x_{n+1}}, \ldots, \frac{\partial}{\partial x_{n+k}}$.

2. Let α be a 1-form in \mathbb{R}^3. Show that if α is invariant under all isometries of \mathbb{R}^3, then α must be zero.

3. For $n \geq 1$ denote by $S^n \subset \mathbb{R}^{n+1}$ the n-sphere, and define $f : S^n \to S^n, f(x) := -x$ to be the antipodal map. Show that f is orientation-preserving iff n is odd.

4. Let $(M, g = \langle \cdot, \cdot \rangle)$ be a Riemannian manifold with Levi-Civita connection ∇. For a function $f : M \to \mathbb{R}$, the gradient of f is the vector field $\text{grad}(f) \in \mathfrak{X}(M)$ defined by
$$\langle \text{grad}(f), X \rangle = df(X) = X(f) \quad \forall X \in \mathfrak{X}(M)$$
For a vector field $V \in \mathfrak{X}(M)$, the curl(V) is the $(0, 2)$-tensor field defined by
$$\text{curl}(V)(X, Y) = \langle \nabla_X V, Y \rangle - \langle \nabla_Y V, X \rangle \quad \forall X, Y \in \mathfrak{X}(M)$$
Show that $\text{curl}(\text{grad}(f)) = 0$.

5. Let M be the surface $M := \{(s, t, s \cdot t) \mid s, t \in \mathbb{R}\} \subset \mathbb{R}^3$.
 (a) Show that at $p = (s, t, s \cdot t) \in M$, the vectors $(1, 0, t) \in T_p\mathbb{R}^3$ and $(0, 1, s) \in T_p\mathbb{R}^3$ are tangent vectors of M, and, furthermore, that $N = \frac{(t, s, -1)}{\sqrt{1 + s^2 + t^2}} \in T_p\mathbb{R}^3$ is a unit normal vector to M.
 (b) Show that the Gaussian curvature of M is $K = \frac{-1}{(1 + s^2 + t^2)^2}$.

6. Consider the metric on \mathbb{R}^2 given by
$$dx \otimes dx + (1 + x^2)^2 \cdot dy \otimes dy$$
Find the Gaussian curvature of this metric.
(7) Denote by $G := \{A \in GL(n, \mathbb{R}) \mid \exists c > 0 : A^{-1} = c \cdot A^t\}$.

(a) Show that G with the matrix multiplication is a Lie group by showing that it is isomorphic as a Lie group to $(O(n), \cdot) \times (\mathbb{R}, +)$.
(b) Identify the Lie algebra \mathfrak{g} of G as a sub-Lie algebra of $\mathfrak{gl}(n, \mathbb{R})$.

(8) Let $\{U_i\}_{i \in I}$ be an open cover of a manifold M, let V be a vector space, and let $\{g_{ij} : U_i \cap U_j \to Aut(V)\}_{ij}$ be the transition functions for a vector bundle E with fiber V. Furthermore, let $\{A_i \in \Omega^1(U_i, End(V))\}_i$ be the 1-forms of a connection on E, i.e., the A_i satisfy

$$A_i = g_{ji}^{-1} \cdot A_j \cdot g_{ji} + g_{ji}^{-1} \cdot dg_{ji} \quad \text{on } U_i \cap U_j.$$

If $\{f_i : U_i \to Aut(V)\}_i$ are such that for all i, j, the identity $g_{ji} \cdot f_i = f_j \cdot g_{ji}$ holds on $U_i \cap U_j$, then show that

$$B_i := f_i^{-1} \cdot A_i \cdot f_i + f_i^{-1} \cdot df_i$$

are also the 1-forms of a connection on E, i.e., they satisfy

$$B_i = g_{ji}^{-1} \cdot B_j \cdot g_{ji} + g_{ji}^{-1} \cdot dg_{ji} \quad \text{on } U_i \cap U_j.$$

(9) Let $E \to M$ be a smooth vector bundle with affine connection ∇. Denote by Ω its curvature 2-form. Show that the trace of the curvature, $tr(\Omega)$, is a closed, globally defined 2-form.

Hint 1: You may use without proof that d commutes with the trace.

Hint 2: You may use without proof that for a matrix of p-forms A and a matrix of q-forms B, we have $tr(A \wedge B) = (-1)^{p+q} \cdot tr(B \wedge A)$.

(10) Let (M, g) be a Riemannian manifold. For a given chart of M denote by g_{ij} the components of the metric tensor g, and denote by Γ^k_{ij} the Christoffel symbols of the Levi-Civita connection. Prove the following identities:

(a) $\Gamma^k_{ij} = \Gamma^k_{ji}$
(b) $\frac{\partial g_{ij}}{\partial x^k} = g_{kl} \Gamma^l_{ki} + g_{kl} \Gamma^l_{kj}$
(c) Use (a) and (b) to show: $\Gamma^k_{ij} = \frac{1}{2} g^{kl} \left(\frac{\partial g_{ij}}{\partial x^l} + \frac{\partial g_{kl}}{\partial x^j} - \frac{\partial g_{jl}}{\partial x^k} \right)$

(11) Let T be a regular tetrahedron.

(a) Calculate the Euler characteristic of T.
(b) Confirm the combinatorial Gauss-Bonnet theorem for T.