(1) Consider \mathbb{R}^4 with coordinates x^1, x^2, x^3, x^4. Prove that on \mathbb{R}^4, the 2-form $dx^1 \wedge dx^2 + dx^3 \wedge dx^4$ is not a wedge product $\alpha \wedge \beta$ of two 1-forms $\alpha, \beta \in \Omega^1(\mathbb{R}^4)$.

(2) Let $\pi : X \to Y$ be a surjective submersion.
 (a) Show that a k-form $\alpha \in \Omega^k(Y)$ is closed $\iff \pi^*(\alpha)$ is closed.
 (b) Give a counterexample for the statement that α is exact $\iff \pi^*(\alpha)$ is exact.

(3) Denote by $T^2 \subseteq \mathbb{R}^3$ the surface of revolution obtained by rotating $x^2 + (y - 2)^2 = 1$ about the x-axis. Pick an orientation given by a unit normal vector field along T^2. Show that the orientation considered as a map $T^2 \to S^2$ is onto.

(4) Find the circumference of the circle of radius 1 around the origin in the metric on \mathbb{R}^2 given by
 $$\frac{4}{(1 + x^2 + y^2)^2} \cdot (dx \otimes dx + dy \otimes dy)$$

(5) For $x = (x^1, \ldots, x^n) \in \mathbb{R}^n$ denote by $|x| = \sqrt{(x^1)^2 + \cdots + (x^n)^2}$ as usual. Consider a metric on \mathbb{R}^n of the form
 $$f(|x|) \cdot (dx^1 \otimes dx^1 + \cdots + dx^n \otimes dx^n)$$
 for some function $f : [0, \infty) \to (0, \infty)$, which is non-decreasing on $[0, 1]$. Prove that for any piecewise smooth curve $\gamma : [a, b] \to \mathbb{R}^n$ with $\gamma(a) = (0, 0, \ldots, 0)$ and $\gamma(b) = (1, 0, \ldots, 0)$, the length of γ is greater than or equal to the length of the straight line path $\lambda(t) = (t, 0, \ldots, 0)$ for $t \in [0, 1]$.

(6) Let $h : \mathbb{R} \to (0, \infty)$ be a smooth function. Consider the metric on \mathbb{R}^2 given by
 $$dx \otimes dx + h(x)^2 \cdot dy \otimes dy.$$
 Show that the Gaussian curvature of this metric is:
 $$K(x, y) = \frac{-h''(x)}{h(x)}.$$
(7) Let \(\{U_i\}_{i \in I} \) be an open cover of a manifold \(M \), and let \(g_{ij} : U_i \cap U_j \to GL(n, \mathbb{R}) \) be the transition functions for a vector bundle. For \(i \in I \), let \(\chi_i : M \to \mathbb{R} \) be a smooth function so that each \(\chi_i \) has support in \(U_i \), the \(\{\chi_i\}_{i \in I} \) are locally finite, and \(\sum_{i \in I} \chi_i = 1 \). Define \(A_i \) on \(U_i \) to be given by

\[
A_i = \sum_j \chi_j g_{ji}^{-1} dg_{ji}.
\]

Show that this defines a connection on the vector bundle, which means that the \(\{A_i\}_{i \in I} \) on \(U_i \cap U_j \) satisfy:

\[
A_i = g_{ji}^{-1} A_j g_{ji} + g_{ji}^{-1} dg_{ji}
\]

(8) Let \(\{U_i\}_{i \in I} \) be an open cover of a manifold \(M \), and let \(g_{ij} : U_i \cap U_j \to GL(n, \mathbb{R}) \) be the transition functions for a vector bundle. Show that:

(a) On \(U_i \cap U_j \cap U_k \) we have:

\[
tr(g_{ji}^{-1} dg_{ji}) + tr(g_{kj}^{-1} dg_{kj}) - tr(g_{ki}^{-1} dg_{ki}) = 0
\]

Hint 1: Consider \(g_{kj}^{-1} g_{ji} = g_{ki} \).

Hint 2: You may use without proof that for a matrix of \(p \)-forms \(A \) and a matrix of \(q \)-forms \(B \), we have \(tr(A \wedge B) = (-1)^{p-q} \cdot tr(B \wedge A) \).

(b) On \(U_i \cap U_j \) we have:

\[
d(g_{ij}^{-1}) = -g_{ij}^{-1} \cdot d(g_{ij}) \cdot g_{ij}^{-1}
\]

(c) Conclude from (b), that on \(U_i \cap U_j \):

\[
d(tr(g_{ij}^{-1} dg_{ij})) = 0
\]

Hint: You may use without proof that \(d \) commutes with the trace.

(9) Let \(G \) be a Lie group. For \(g \in G \), denote by \(\psi : G \to G, \psi(g) = g^{-1} \) the inverse map, and denote by \(L_g : G \to G, L_g(h) = g \cdot h \) and \(R_g : G \to G, R_g(h) = h \cdot g \) the left- and right-multiplication by \(g \), respectively.

(a) Show that for \(g \in G \):

\[
R_{g^{-1}} \circ \psi = \psi \circ L_g
\]

(b) Suppose there is a metric \(\sigma \) on \(G \) so that \(\psi \) is an isometry. Show that:

\[
L_g^*(\sigma) = \sigma \text{ for all } g \in G \quad \text{iff} \quad R_g^*(\sigma) = \sigma \text{ for all } g \in G
\]

(10) Recall that the 2-sphere \(S_r^2 = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 = r^2 \} \) of radius \(r \) has a constant Gaussian curvature of \(1/r^2 \). Using the parametrization of \(S_r^2 \) given by

\[
F(\varphi, \theta) = (r \sin(\theta) \sin(\varphi), r \sin(\theta) \cos(\varphi), r \cos(\theta))
\]

for \(0 < \varphi < 2\pi \) and \(0 < \theta < \pi \), fix an angle \(0 < \alpha < 2\pi \) and denote by \(\Omega_\alpha \) the image of \(F \) restricted to \(0 < \varphi < \alpha \) and \(0 < \theta < \frac{\pi}{2} \),

\[
\Omega_\alpha = F \left((0, \alpha) \times (0, \frac{\pi}{2}) \right).
\]

Verify the Gauss-Bonnet formula for the region \(\Omega_\alpha \) by checking that both sides of the equation coincide.

Hint: You may use the fact that the area of \(S_r^2 \) is \(4\pi r^2 \).