Part Zero (16 points)

Answer each of the following questions fully. None should take more than a few paragraphs, and some may need less than that. It is not advisable to spend more than 30 minutes on Part Zero.

1. Give a detailed proof that there is no largest cardinal. Cite axioms from ZFC as needed.

2. Among the following three sets, which are m-reducible (alternatively, 1-reducible) to which others? (This is really six questions, but your justifications may be quite brief.)

 \[\text{Th}(\mathcal{N}) \quad \text{Cn}(PA) \quad \text{the Halting Problem } K. \]

 Here $\mathcal{N} = (\mathbb{N}, +, \cdot)$ is the structure of the natural numbers under addition and multiplication, and Cn(PA) is the set of theorems provable from the (decidable) set PA, which consists of the axioms of Peano Arithmetic.

3. Let A be a substructure of B. Suppose that for every finite tuple a_1, \ldots, a_n of elements of A and for every $b \in B$, there is an automorphism f of B with $f(a_i) = a_i$ for each $i \leq n$ and $f(b) \in A$. Prove that A is an elementary substructure of B.

4. Prove that it is consistent with the theory of the structure $(\mathbb{N}, 0, 1, <, +, \cdot)$ for a number to have infinitely many prime factors.
Part One (42 points)

Do THREE of the following six problems (which continue on the next page). All syntax is first order—with equality, $=,$ a logical symbol (hence always part of any of the languages L considered). Please justify your answers with full proofs, where you may quote well-known results by name (without proof).

1. Let $\varphi(x,y)$ be an L-formula in the free variables, x and y. Given an L-structure M and an element $c \in M$, the parametric formula $\varphi(x,c)$ defines a set in M, denoted by $\varphi(M,c)$.

 (a) Prove: if T is a complete L-theory such that, for every model $M \models T$ and every element $c \in M$, the set $\varphi(M,c)$ is finite, then there is a uniform finite bound on the cardinality of all those sets $\varphi(M,c)$.

 (b) Prove or disprove the converse: when there is such a uniform bound, all the sets $\varphi(M,c)$ are finite (in all $M \models T$).

2. (a) Prove or disprove: the ordering of the rationals embeds elementarily into any non-trivial dense linear order without endpoints.

 (b) Prove or disprove: any two non-trivial dense linear order without endpoints are elementarily equivalent.

3. Let L_P be the language whose only non-logical symbol is a unary predicate P. Let T_P be the L_P-theory axiomatized by the single axiom $\forall x P(x) \lor \forall x \neg P(x)$. Let T_P^∞ be the theory of all infinite models of T_P.

 (a) How to axiomatize T_P^∞?

 (b) How many models, up to isomorphism, does T_P have in any given cardinality (finite or infinite)?

 (c) How many completions does T_P^∞ have?

 (d) How many models does each of T_P^∞’s completions have in any given infinite cardinality?

 (e) Prove that every embedding of non-empty models of T_P^∞ is elementary.

4. Suppose $L_g = (1, \cdot)$ with the only nonlogical symbols, a constant symbol 1 and a binary function symbol \cdot.

 Prove or disprove: the theory of groups is axiomatizable by universal L_g-sentences, i.e., L_g-sentences such that, when they are written in prenex normal form, the only quantifiers are \forall.

5. Suppose $L_Z = (0, +, -)$ with a constant, 0, and two binary function symbols, + and −.

 Consider the additive group of the integers, \mathbb{Z}, as an L_Z-structure with the standard interpretations.

 (a) Prove: all substructures of \mathbb{Z} are elementarily equivalent to \mathbb{Z}, and there are infinitely many.

 (b) Prove: no proper substructure (in fact, submodel) of \mathbb{Z} is elementary.

 (c) Prove or disprove: therefore the complete theory of \mathbb{Z} has quantifier elimination.

 (Part One continues on the next page.)
6. Suppose L_E is a language whose single non-logical symbol is a binary relation symbol E. Consider the L_E-theory T of all L_E-structures in which E defines an equivalence relation with two infinite E-classes.

(a) Write down an L_E-axiomatization of T.

(b) How many non-isomorphic countable models does T have?

(c) How many non-isomorphic models does T have of cardinality \aleph_1?

(d) Conclude what you can about the completeness of T.
Part Two (42 points)

Do THREE of the following six problems.

1. Show (in ZF): for a limit ordinal λ, the cofinality of λ is the unique regular cardinal κ such that there is an increasing function from κ to λ whose range is unbounded in λ.

2. Show (in ZF): if λ is a singular ordinal, then there are a stationary subset S of λ and a function $f : S \to \lambda$ such that for every $\alpha \in S$, $f(\alpha) < \alpha$, and such that f is not constant on any stationary subset of S.

 Is this true if λ is regular? Why or why not?

3. Suppose $A \subseteq \omega$ is recursively enumerable, and for every $e \in A$, $W_e = \omega$, that is, φ_e is total. Show that there is an $x \in \omega$ such that $W_x = \omega$ and $\varphi_x \neq \varphi_e$ for every $e \in A$.

4. Suppose ZFC is consistent. Show that there is a Turing program φ_e that never terminates, on any input, but such that ZFC does not prove that it never terminates.

5. Let T be a deductively closed, consistent and decidable set of sentences (say in a first order language with finitely many symbols). Show that there is a complete, consistent, decidable $T' \supseteq T$.

6. For a model M of Peano Arithmetic, let $D(M)$ be the set of $a \in M$ such that a is definable in M without parameters (that is, for some formula $\varphi(x)$, $M \models \varphi(a)$, but $M \models \neg \varphi(b)$ for all $b \in M$ with $b \neq a$). As is common, we will say that a set $A \subseteq M$ is definable in M if there is a formula $\varphi(x)$ such that $A = \{a \mid M \models \varphi(a)\}$. It is said to be definable in M using parameters if for some $\bar{b} \in M$ and some formula $\varphi(x, \bar{y})$, $A = \{a \mid M \models \varphi(a, \bar{b})\}$.

 (a) Show that there is a (countable) model M of Peano Arithmetic such that $D(M)$ is not definable in M (even allowing the use of parameters). In fact, if the standard model N is a proper elementary submodel of M, then M is as wished.

 (b) Show that every model N of Peano Arithmetic has a countable elementary submodel M such that $D(M)$ is definable in M.