ALGEBRA QUALIFYING EXAM
SEPTEMBER, 2012

Instructions: Do eight problems. Do not do more than eight problems.

(1) Let \(k \) be a field.
 (a) Prove the Division Algorithm for the polynomial ring \(k[x] \): If \(a \) and \(b \) are polynomials in \(k[x] \) with \(b \) nonzero, then there exist unique polynomials \(q, r \in k[x] \) such that
 \[
 a = qb + r
 \]
 and \(r = 0 \) or \(\deg r < \deg b \).
 (b) Use part (a) to show that \(k[x] \) is a principal ideal domain (PID).
 (c) Explain, with proof, whether \(k[x, y] \) is a PID.

(2) (a) Prove that a group of order 160 is not simple.
 (b) Prove that a group of order \(pqr \) for distinct primes \(p, q, r \) is not simple.

(3) Let \(R \) be a ring and let \(M \) be a left \(R \)-module.
 (a) Prove that the following three conditions are equivalent:
 (i) \(M \) satisfies the ascending chain condition on submodules.
 (ii) Every nonempty set of submodules of \(M \) contains a maximal element under inclusion.
 (iii) Every submodule of \(M \) is finitely generated.
 (b) A module \(M \) satisfying the above conditions is called Noetherian. Give two different examples of Noetherian modules.

(4) Define the Heisenberg group \(H_3(\mathbb{Z}) \) as
 \[
 \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} | a, b, c \in \mathbb{Z} \right\}
 \]
 with the operation of matrix multiplication.
 (a) Show that \(H_3(\mathbb{Z}) \) is nonabelian and compute the center of \(H_3(\mathbb{Z}) \).
 (b) Prove that \(H_3(\mathbb{Z}) \) is a nilpotent group.

(5) Let \(A \) be an abelian group, written additively. Call \(A \) divisible if for every \(a \in A \) and nonzero \(m \in \mathbb{Z} \) there exists \(\overline{b} \in A \) so that \(a = m\overline{b} \).
 (a) Can a nontrivial finite abelian group be divisible?
 (b) Show that the quotient of a divisible group is divisible.
 (c) Prove that \(\mathbb{Q} \) and \(\mathbb{Q}/\mathbb{Z} \) have no proper subgroups of finite index.

(6) (a) Prove that if \(\mathbb{F}_q \) is a finite field with \(q \) elements, then there is a prime number \(p \) and a positive integer \(n \) such that \(q = p^n \).
 (b) Prove that if \(\mathbb{F}_q \) is a finite field with \(q \) elements, then its multiplicative group \(\mathbb{F}_q^\times \) is cyclic.

(7) List all non-isomorphic finite abelian groups of order 24, and prove that your list is complete.
(8) (a) Compute the minimal polynomial $f(x)$ of $\alpha = \sqrt{2} + \sqrt[3]{5}$ over \mathbb{Q}.
 (b) Let E be the splitting field of the polynomial $f(x) = x^3 - 7 \in \mathbb{Q}[x]$.
 Compute the Galois group $\text{Gal}(E/\mathbb{Q})$.

(9) Let E be the splitting field of the polynomial $f(t) = t^5 - 4t + 2$ over \mathbb{Q}.
 Compute the Galois group $\text{Gal}(E/\mathbb{Q})$.

(10) Let R be a commutative ring with 1, and let A and B be left R-modules.
 (a) Sketch the construction of the tensor product $A \otimes_R B$.
 (b) Prove that $A \otimes_R B \cong B \otimes_R A$.

(11) Let G be a group, written multiplicatively, with identity e, and let S be a
 subset of G that generates G. For every element $x \in G \setminus \{e\}$, we denote by
 $\ell_S(x)$ the smallest integer k such that x can be written as a product of k
 elements of $S \cup S^{-1}$. We define $\ell_S(e) = 0$. The function $\ell_S : G \to \mathbb{N}_0$
 is called the word length function of G with respect to S. The growth function
 of G with respect to a generating set S is the function $\gamma_S(n)$ that counts
 the number of elements of the group G of length at most n.
 (a) Prove that if S and T are finite sets that generate the group G, then
 there is a positive number c such that:
 $$\gamma_S(n) < c \gamma_T(n)$$
 for all sufficiently large n.
 (b) Compute the growth function for the free abelian group $\mathbb{Z}^2 = \mathbb{Z} \oplus \mathbb{Z}$
 generated by the set $S = \{(1,0),(0,1)\}$.
 (c) Compute the growth function for the free group F_2 of rank 2 generated
 by the set $S = \{a,b\}$.

(12) (a) Define "category."
 (b) Prove that initial and terminal objects in a category are unique up to
 isomorphism.

(13) (a) Construct the regular representation of the cyclic group of order 4.
 (b) Construct a nontrivial irreducible representation of S_3.

(14) Prove that the subgroup of $F_2 = \langle a,b \rangle$ generated by the set
 $\{a^n b a^{-n} : n = 1, 2, 3, \ldots \}$ is a free group of countably infinite
 rank.