Complex Variables Qualifying Exam

Spring, 1999

Do Any Eight Problems.

Throughout, D denotes the disc $\{z : |z| < 1\}$.

1. Find a conformal map from the strip $S = \{z : 0 < \text{Re}z < 1\}$ onto D.

2. Use the calculus of residues to compute

$$\int_{-\infty}^{\infty} \frac{e^{ix}}{(1 + x^2)^{3/2}} dx$$

3. Let I denote the closed interval $[0, 1]$.

 a) Show there exists a unique single-valued analytic branch $\varphi(z)$ of
 $\log(z^{1/2} - 1)$ in $C - I$ with $\varphi(2)$ real.

 b) Find the Laurent expansion of φ in the annulus $\{z : 1 < |z| < \infty\}$.

4. Let $B = \{z : |\text{Re}z| < 1/2$ and $|\text{Im}z| < 1/2\}$. Suppose f is analytic on B
and maps B into D. Show

$$|f'(0)| \leq \frac{8}{\pi}.$$

For extra credit ($\frac{1}{2}$ problem), show

$$|f'(0)| \leq 2.$$

5. Suppose f and g are entire analytic functions. Suppose that there exist

$z_0 \in \mathbb{C}, C > 0$ and $\alpha > 0$, α not an integer, such that

$$|f(z)| \leq C|z - z_0|^\alpha |g(z)|$$

for all $z \in \mathbb{C}$. Show that $f(z) \equiv 0$.

6. For \(n = 0, 1, 2, 3, \ldots \) define \(P_n(z) = \sum_{k=0}^{n} \frac{(-1)^k}{k!} z^{2k} \). Show there exists \(n_0 \) such that, for all \(n \geq n_0 \), \(P_n(z) \) has no zeros in \(D \).

For extra credit (1 problem), show \(n_0 = 0 \) will do.

7. Suppose \(f \) is analytic on \(D \), and, in fact, maps \(D \) into \(D \), with \(f(0) = 0 \), \(f'(0) = a \), and \(|a| < 1 \). Let \(M_a \) denote the Möbius transformation

\[
M_a(w) = \frac{w + a}{1 + \overline{a}w}.
\]

Show there exists a function \(h(z) \), analytic on \(D \), with \(|h(z)| \leq 1 \) for all \(z \in D \) and \(h(0) = 0 \), such that

\[
f(z) = z M_a(h(z)) \quad \text{for all} \quad z \in D.
\]

8. Suppose \(f \) is analytic and bounded in \(D \) and let \(M = \sup_{z \in D} |f(z)| \).

Suppose further that \(f(0) = 1 \). Let \(n(r) \) denote the number of zeros of \(f \) in the disc \(\{ z : |z| < r \} \), a zero of multiplicity \(m \) being counted \(m \) times. Show

\[
n(r) \leq \frac{\ln M}{\ln(1/r)}.
\]

9. Suppose \(u \) is a non-constant harmonic function on the region \(G \) in \(\mathbb{C} \). Let

\[
G_0 = \{ z \in G : \frac{\partial u}{\partial x}(z) = \frac{\partial u}{\partial y}(z) = 0 \}.
\]

Show \(G_0 \) has no points of accumulation in \(G \), i.e., for every \(z_0 \in G \), there exists \(\epsilon > 0 \), such that \(0 < |z - z_0| < \epsilon \) implies \(z \) is not in \(G \).

10. Let \(f \) be analytic in a region \(G \) and for \(w \in \mathbb{C} \), let \(\mu(w) \) be the number of zeros in \(G \) of \(f(z) - w \), counted according to multiplicity. Suppose \(\mu(w_0) \geq n \), where \(w_0 \in \mathbb{C} \) and \(n \) is a positive integer. Show there exists a neighborhood \(W \) of \(w_0 \) such that every \(w \in W - \{ w_0 \} \) has at least \(n \) distinct pre-images under \(f \) in \(G \).

11. Given \(f_n \) analytic, mapping \(D \) in \(D \), \(n = 1, 2, 3, \ldots \). Let \(A = \{ \frac{1}{k} : k = 2, 3, 4, \ldots \} \cup \{ 0 \} \). Suppose for every \(a \in A \), that \(\lim_{n \to \infty} f_n(a) \) exists in \(\mathbb{C} \).

Show there exists a complex-valued function \(f \) on \(D \) such that \(\lim_{n \to \infty} f_n(z) = f(z) \) for all \(z \in D \), the convergence being uniform on every compact subset of \(D \).