REAL VARIABLES QUALIFYING EXAMINATION

INSTRUCTIONS: Work any 8 problems. Time: three hours.

May 21, 1999

1. Prove the Riemann-Lebesgue Theorem: if \(f \in L^1(-\infty, \infty) \) then \(\hat{f}(y) \to 0 \) as \(y \to \infty \).

2. Suppose \(f : [0, 1] \to \mathbb{R} \) is continuous and satisfies \(\int_0^1 f(x)x^n \, dx = 0 \) for all integers \(n \geq 0 \). Prove that \(f(x) \equiv 0 \). (Hint. Use the Weierstrass Approximation Theorem).

3. When \((X, \mu) \) is a measure space satisfying \(\mu(X) < \infty \), show that \(L^2(X) \subset L^1(X) \). Discuss the case in which \(\mu(X) = \infty \).

4. Suppose \(\phi_1, \phi_2, \ldots \) is an orthonormal sequence in a Hilbert space \(H \), and \(f \in H \). Show that for any \(n \), the norm of \(f - \sum_{j=1}^n c_j \phi_j \) is minimized by choosing \(c_j = (f, \phi_j) \).

5. Discuss in outline, with pertinent definitions but without proofs, the phenomena of recurrence and transience for random walks on \(\mathbb{Z}^2 \) and \(\mathbb{Z}^3 \).

6. Suppose \(S_1, S_2, \ldots \) are measurable subsets of \(\mathbb{R}^4 \) and that the sum of their measures is finite. Let \(A \) be the set of points in infinitely many of the \(S_n \)'s. Show that \(A \) is of measure zero.

7. Suppose \(X \) is a complete metric space, and that \(A_1, A_2, \ldots \) is a sequence of open dense subsets of \(X \). Show that \(\bigcap A_n \) is a dense subset of \(X \). (the Baire Category Theorem).

8. In the above problem, suppose \(X = [0, 1] \). Discuss in detail the cardinality of \(\bigcap A_n \).
9. Show that any continuous linear functional T on a Hilbert space H is of the form $T(f) = (f, g)$, for some $g \in H$.

10. Assuming Beppo Levi's theorem (the monotone convergence theorem), prove Fatou's theorem: if $\{f_n\}$ is a sequence of non-negative functions in L^1 for which $\int f_n \leq M$ and $f_n \to f$ a.e., then $f \in L^1$ and $\int f \leq \lim \inf \int f_n$.

11. Show by example that strict inequality is possible in Fatou's theorem.

12. Outline a proof that L^1 is complete.

13. State (do not prove) Weyl's criterion for equidistribution (mod 1) of a sequence. Use the Weyl criterion to show that if α is irrational, then the sequence $\alpha, 2\alpha, 3\alpha, \ldots$ is equidistributed mod 1.

15. Show that the unit square is a continuous image of the Cantor set.