TOPOLOGY QUALIFYING EXAM - SEPTEMBER 2000

INSTRUCTIONS: THE EXAM CONSISTS OF THREE PARTS, EACH WITH FOUR QUESTIONS. ANSWER AT LEAST TWO QUESTIONS FROM EACH OF THE THREE PARTS AND EIGHT QUESTIONS OVERALL.

PART I

1) Let X be a space*, $I = [0, 1]$ with the Euclidean topology, and consider $X \times I$ with the Tychonoff topology.
 (i) Show that X is metrizable $\iff X \times I$ is metrizable.
 (ii) Show that X has a countable basis $\iff X \times I$ has a countable basis.

2) Let $f : X \to Y$ be a map* from a space X to a space Y.
 (i) If f is one-to-one and Y is Hausdorff, must X be Hausdorff? Explain.
 (ii) If f is onto and X is Hausdorff, must Y be Hausdorff? Explain.

3) Give examples, with brief explanations, of:
 (i) An open, onto map which is not a closed map.
 (ii) A closed, onto map which is not an open map.
 (iii) A quotient map which is neither an open map nor a closed map.

4) Let X_n be the one-point union of n copies of the circle, S^1, $1 \leq n \leq \infty$.
 [Thus X_n is obtained from a disjoint union of n copies of S^1 by choosing a basepoint in each S^1 and identifying these basepoints with each other. A subset U of X_n is open \iff the intersection of U with each S^1 is open in that S^1.
]
 (i) Prove that X_n is compact $\iff n < \infty$.
 (ii) Prove that X_n is connected for all n.
PART II

5) (i) Sketch calculations of the fundamental groups of X_2 (in the notation of Question 4) and the torus $T^2 = S^1 \times S^1$.
(ii) X_2 may be viewed as a subspace of T^2. Is X_2 a retract*** of T^2? Explain.

6) (i) Sketch calculations of the fundamental groups of S_2, the surface of genus 2, and $\mathbb{R}P^2$, the real projective plane.
(ii) Is it possible for S_2 to be a covering space of $\mathbb{R}P^2$? Explain.

7) (i) Sketch a calculation of the fundamental group of $\mathbb{R}P^3 \times S^1$, where $\mathbb{R}P^3$ is 3-dimensional real projective space.
(ii) Prove that the spaces $\mathbb{R}P^3 \times S^1$, $S^3 \times S^1$ (where S^n denotes the n-dimensional sphere) are not homeomorphic but that their universal covering spaces are homeomorphic.

8) (i) Describe all the connected covering spaces of $\mathbb{C}P^2 \times S^1$, where $\mathbb{C}P^2$ is the complex projective plane.
(ii) Is the universal covering space of $\mathbb{C}P^2 \times S^1$ contractible? Explain.
PART III

9) (i) Sketch a calculation of the integral homology groups of $\mathbb{R}P^2$.
 (ii) State the Universal Coefficient Theorem for homology groups.
 (iii) Using (i) and (ii), derive a calculation of the mod 2 homology groups of $\mathbb{R}P^2$.

10) Sketch a calculation of the integral homology groups of X_n (in the notation of Question 4).

11) Let A be a subspace of a contractible space X.
 (i) Prove that $H_n(A)$ is isomorphic to $H_{n+1}(X, A)$ if $n > 0$.
 (ii) What is the correct statement if $n = 0$?

12) (i) State the Kunneth Theorem for homology groups.
 (ii) Prove that the spaces $S^2 \times S^4$, $S^3 \times S^3$ are not homeomorphic.
FOOTNOTES

* Throughout, space is used as an abbreviation for topological space.

** Throughout, map is used as an abbreviation for continuous map.

*** A subspace R of a space X is a retract if there is a map from X to R which, when restricted to R, is the identity map from R to itself.